Aktuelle Forschungsprojekte

Image Verification of storage suitability of cryo tubes
Image Low temperature – test facilities
Image Behavior of multiphase cryogenic fluids
Image Measurements on ceiling mounted cooling systems
Image Investigation of materials
Image Software for technical building equipment
Image Micro heat exchangers in refrigeration
Image Preformance measurements of heat exchangers
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Micro fluidic expansion valve
Image Software modules
Image Non- invasive flow measurements
Image Helium extraction from natural gas
Image IN-SITU SWELLING BEHAVIOUR OF POLYMER MATERIALS IN FLAMMABLE FLUIDS
Image Range of services laboratory analyses
Image Heat2Power

You are here:   /  Home


IO-Scan - Integral measuring optical scanning method

INNO-KOM

02/2022 - 07/2024

M.Sc. Rebekka Grüttner

+49-351-4081-5314

IO-Scan

Development of a photometric measurement method for determining the air exchange rate in indoor areas

Motivation

  • Cost-effective, real-time assessment of indoor air quality in the form of air exchange rates
  • Verify and optimise the effectiveness of ventilation systems in occupied areas
  • Ability to evaluate aerosol reduction through the interaction of window ventilation, building ventilation system and mobile room air cleaners

Project Objective

  • Self-calibrating measuring system
  • Deviation from previous trace gas measurements should be within 10%.
  • Real-time results can detect and evaluate the influence of changes in the ventilation system during the measurement process
  • Intended measurement depth in the room: 1 m to 50 m

Solution Approach

  • The introduction of mist aerosols into the room air influences the light transmittance to be measured.
  • Transmittance of an air-aerosol mixture and use of measured transmittance to determine air exchange rate
  • Integral real-time optical measurement over individual indoor distances

Your Request

Further Projects

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures