Aktuelle Forschungsprojekte

Image Reducing the filling quantity
Image Investigation of materials
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Test procedures for electrical components
Image Micro fluidic expansion valve
Image Multifunctional electronic modules for cryogenic applications
Image Modular storage system for solar cooling
Image Lifetime prediction of hermetic compressor systems
Image Performance tests of condensing units
Image Range of services laboratory analyses
Image IN-SITU SWELLING BEHAVIOUR OF POLYMER MATERIALS IN FLAMMABLE FLUIDS
Image Influenced melting point of water by magnetic field
Image Measurements on ceiling mounted cooling systems
Image Air-water heat pumps
Image Calibration of Low Temperature Sensors
Image Investigation of material-dependent parameters

You are here:   /  Home


Thermal engines

Industry

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

Power Generation from Waste Heat

Principally every refrigeration process could also work as a power cycle. In this way an energy consuming machine which provides a temperature below the ambient temperature turns into a heat engine operating between the ambient and a higher temperature. In a first step cryogenic refrigeration cycles are used reversely as heat engines, as they can handle large temperature gradients.

Thermal engines similar to the Stirling cycles

In cooperation with FOX exhaust systems, the ILK Dresden has developed a waste heat recovery system. The thermal engine dedicated for the car exhaust gas system was now presented at the International Motor Show (IAA, 2011) in Frankfurt for the first time.

With the aid of a model the functionality was demonstrated impressively.

The prototype will deliver an electrical power of 2 kW, at an exhaust gas temperature between 300 and 500°C (570 to 930°F). Currently optimization work, mainly related to generator, is underway. The figure below shows the illustration of the thermal engine in an exhaust tract.

Thermal engines related to other thermodynamic cycles

With several industrial partners heat engines are under development, which operate according to the following thermodynamic cycles:

  • closed and open Joule process
  • valve less Ericsson process

Your Request

Further Projects

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes