Aktuelle Forschungsprojekte

Image Measurement of insulated packaging
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Test procedures for electrical components
Image High Capacity Pulse Tube Cooler
Image Software for technical building equipment
Image Micro fluidic expansion valve
Image Filter Tests
Image Hydrogen and methane testing field at the ILK
Image Preformance measurements of heat exchangers
Image Low Temperature Measuring Service
Image Range of services laboratory analyses
Image Verification of storage suitability of cryo tubes
Image Micro heat exchangers in refrigeration
Image Solar Cooling
Image Ice Slurry Generation
Image Thermal engines

You are here:   /  Home


Behavior of multiphase cryogenic fluids

Matthias Schneider

+49-351-4081-5126

experimental und numerical investigations

With the help of this basic research project, processes that occur during the sudden evaporation of cryogenic media should be better understood, described and evaluated. This should create possibilities for improved design and efficient operation of safety elements and power transmitting components in plants with cryogenic media.
A well-founded theoretical understanding of the dynamic calculation and evaluation of boiling cryogenic media will be developed. In order to obtain, for example, a concrete component behaviour under cryogenic conditions, numerical descriptions are required beyond the design calculations, both for fluid dynamics and for the spatial and temporal change in temperature.
Parallel to this, the experimental basis for the design of complex cryogenic components and systems engineering is being improved. In particular, two facilities for tests with nitrogen and helium in the two-phase region are being built or extended. These allow to investigate the boiling dynamics and to characterize and optimize special components in a wide range of parameters.
The objectives and results of the preliminary research project include

  • Calculated parameters from various numerical simulations for essential cryogenic components
  • Extensive experimental results for variations of the underlying geometry, advantageous process control, improved design of components
  • Basic thermodynamic processes in gas chillers
  • Calculation algorithms for the description of dynamic heat transport phenomena
  • Evaluation of critical plant conditions
  • Suitable materials for cryostat components and cryogenic plants
  • Novel components e.g. for small helium mass flows

Video of the mass transfer rate between the liquid and the vapour phase inside a Venturi tube

If you can not see the video, please use the external link to YouTube.


Your Request

Further Projects

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Reception ILK Dresden

+49-351-4081-5000

+49-351-4081-5099

Image ISO 9001
Bild Zuse Mitglied Bild SIG