Aktuelle Forschungsprojekte

Image Heat2Power
Image Filter Tests
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Preformance measurements of heat exchangers
Image Low Temperature Tribology
Image Micro fluidic expansion valve
Image Micro heat exchangers in refrigeration
Image State of system and failure analyses
Image Thermal engines
Image Certifiable connection types in cryogenics
Image Cryostats, Non-Metallic and Metallic
Image Swirl-free on the move...
Image Refrigerants, lubricants and mixtures
Image Computational fluid dynamics CFD
Image Optimizing HVAC operation with machine learning
Image Testing of mobile leak detectors according to DIN EN 14624

You are here:   /  Home


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to -263°C

At the ILK Dresden a highly innovative testing field for cryogenic high pressure applications for the energy carriers hydrogen and methane is operated. It allows fundamental research and tests with the liquid and gaseous media LH2 and LNG.

Tests and qualifications on component parts can be performed simultaneously at temperatures from 10 K (-163 °C / –441 °F) to room temperature and at pressures from high vacuum to 1,000 bar (14500 psi) operating or atmospheric pressure.
This allows for:

  • Investigation of charging and discharging processes on hydrogen storage tanks, also at cryogenic high-pressure reservoirs
  • Development of new methods for storing at distinctly higher specific densities compared to the cryo-liquefied state (e. g. hydrogen up to 100 kg/m³, see Figure 2 below)

The hydrogen and methane testing field also facilitates the new development and improvement of:

  • Chiller and coolers devices,
  • Storage devices for latent heat
  • High-pressure storage tanks in the cryogenic regime at pressures of up to 1,000 bar
  • Special heat exchangers
  • Cryogenic pumping systems for liquid hydrogen, methane and high-pressure applications
  • Realization of innovative hydrogen storage systems

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request

Further Projects

Image

Characterisation of Superconductors in Hydrogen Atmosphere

Are superconductors really compatible with hydrogen?

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825