Aktuelle Forschungsprojekte

Image Low Temperature Tribology
Image Ice Slurry Generation
Image Behavior of multiphase cryogenic fluids
Image Verification of storage suitability of cryo tubes
Image Cold meter
Image Swirl-free on the move...
Image Non- invasive flow measurements
Image Software modules
Image All-in-one device for freeze-drying and production of biomaterial
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Low temperature – test facilities
Image Humidifier System for High-Purity Gases
Image Laseroptical measurement
Image Refrigerants, lubricants and mixtures
Image Corrosion inhibitor for ammonia absorption systems
Image Ionocaloric cooling

You are here:   /  Home


Low Temperature Measuring Service

Industry and R&D

Dr. rer. nat. Matthias Schneider

+49-351-4081-5126

Measurement of Thermal Properties at Low Temperatures

The cool down to cryogenic temperature causes thermal stress within the structure of components or complete devices. Furthermore thermal material properties could change crucial.

Samples can be proved down to 10 K via temperature cycling tests and/or measurements of the thermal conductivity, the coefficient of thermal expansion (also as integral for large sample dimensions) and the heat capacity. An experimental station with optimised conditions for measuring the thermal conductivity of different materials is under construction.

Thermal Conductivity

IndicatorMinimalMaximal
Measuring range10-2 W/(m K)103 W/(m K)
Measuring accuracy1 %5 %
 Temperature range10 K350 K
Sample preparationCustomer material
Sample dimensionup toØ 60 mm x 20 mm
other  dimenions on request

Zur Untersuchung der Proben stehen mehrere Versuchsaufbauten zur Verfügung. Abbildung 2 zeigt einen Aufbau speziell zur Untersuchung von Proben in Form von Rohrabschnitten. Die dort verwendete Messzelle kann in ihrer Höhe auf unterschiedliche Probenlängen angepasst werden ebenso sind Adaptionen auf andere Probenformen möglich. In weiteren Aufbauten lassen sich stabförmige Proben oder auch Flachproben untersuchen.

Paremeter Grenzwerte
Materialien Kunststoffe, Metalle

Abmessungen: Rohrabschnitt Da x L x t

Abmessungen: Flachprobe L x B x H

30 x 20 x 1 mm

80 x 10 x 2 mm

Temperaturbereich 4 ... 333 K / -269 ... +60°C

 

[Translate to EN:] Versuchsstand Wärmekapazität

[Translate to EN:]

 

[Translate to EN:]

[Translate to EN:]

Der Probenträger wurde speziell gestaltet um einen minimalen Wärmeeintrag in die Probe zu gewährleisten. Die Messungen erfolgen in thermisch stationärem Zustand und in einem Isolationsvakuum kleiner 1 x 10-4 mbar in Kombination mit Superisolationsfolie um Wärmeströme von der Umgebung in die Probe auszuschließen. Die Heizung und der Temperatursensor verfügen ebenfalls über eigene Wärmekapazitäten. Diese werden in einem separaten Versuch ohne die Probe ermittelt. Die Messwerte der Probe werden wiederum mit diesen Anteilen korrigiert.

Parameter Grenzwerte
Materialien Kunststoffe, Metalle
Abmessungen, L x B x H 30 x 30 x 10 mm
Temperaturbereich

20 ... 333 K / -253 ... +60°C

< 20 K auf Anfrage

 

[Translate to EN:]

[Translate to EN:] Ausgehend von einer Referenztemperatur \( T_0 \), und einer Länge \( L_0 \) ändern Materialien ihre geometrischen Abmessungen bei einer Temperaturänderung. Beim Erwärmen dehnen sich die meisten Werkstoffe aus und beim Abkühlen schrumpfen diese. Der physikalische Kennwert für dieses Verhalten ist der temperaturabhängige und werkstoffspezifische Ausdehnungskoeffizient \( \alpha(T) \) \begin{equation} \alpha(T) = \frac{dL(T)}{dT} \cdot \frac{1}{L_0} \left[ \mathrm{K^{-1}} \right]

[Translate to EN:]

[Translate to EN:]

Die Proben werden einseitig auf einen Probenhalter, siehe Abbildung 5, gespannt und in den Versuchsaufbau montiert. Der Probenhalter ist mit dem Kryokühler thermisch und schwingungsentkoppelt verbunden. Die Proben sind von einer thermischen Abschirmung umgeben um ein Erwärmen durch Wärmestrahlung und damit Temperaturgradienten in den Proben zu reduzieren. Bei schlecht wärmeleitenden Materialien wie z.B. bei Kunststoffen ist dieser Gradient deutlich stärker ausgeprägt als bei metallischen Proben. Um diesen Gradienten zu vermindern wird zusätzlich ein wärmeleitendes Austauschgas im Probenraum verwendet. Die freien Enden der Proben werden mit einem Lasermesssystem, einem Triangulationsmesssystem durch das optische Fenster abgetastet. Die Messwerte Probenlänge, Temperaturen und Messzeit werden vom PC aufgezeichnet und anschließend ausgewertet. Abbildung 5 zeigt nochmals den Versuchsstand und das Lasermesssystem vor dem optischen Fenster.

Parameter Grenzwerte
Materialien Kunsstoffe, Metalle
Abmessungen, L x B x H 100 x 10 x 2 mm
Temperaturbereich 20 ... 333 K / -253 ... +60°C
Anzahl Proben 2 Proben, 1 Referenz

 

Thermal Tests (Cycling)

IndicatorMinimalMaximal
Cool down rate25 K/h200 K/min
Cool down cycles1Customer preference
Measuring accuracy1 %5 %
 Temperature range80 K (5 K)450 K
Sample preparationCustomer material
Sample dimensionup toØ 400 mm x 550 mm
other  dimenions on request

Heat Capacity

IndicatorMinimalMaximal
Measuring range10 J/(kg K)10 J/(kg K)
Measuring accuracy1 %5 %
Temperature range10 K350 K
Sample preparationCustomer material
Sample dimensionup to150 x 150 x 150 mm3
other  dimenions on request

Coefficient of Thermal Expansion

IndicatorMinimalMaximal
Measuring range10-6 K-110-4 K-1
Measuring accuracy0.1 %5 %
Temperature range10 K350 K
Sample preparationCustomer material
Sample dimensionup to200 x 200 x 200 mm3
other  dimenions on request

Your Request

Further Projects

Image

Calibration of Low Temperature Sensors

According to the comparative measurement method

Image

High Capacity Pulse Tube Cooler

for Cryogenic High-Power Applications

Image

Thermal engines

Power Generation from Waste Heat

Image

Helium extraction from natural gas

Innovative solutions for helium extraction

Image

Ice Slurry Generation

Using Direct Evaporation