Aktuelle Forschungsprojekte

Image Reduction of primary noise sources of fans
Image Innovative Parahydrogen Generator Based on Magnets
Image Swirl-free on the move...
Image Investigation of coolants
Image Hydrogen and methane testing field at the ILK
Image High Capacity Pulse Tube Cooler
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Electrical components in refrigeration circuits
Image Heat2Power
Image IN-SITU SWELLING BEHAVIOUR OF POLYMER MATERIALS IN FLAMMABLE FLUIDS
Image Software for test rigs
Image Test procedures for electrical components
Image Computational fluid dynamics CFD
Image Test rigs for refrigeration and heat pump technology
Image Multifunctional electronic modules for cryogenic applications
Image Thermostatic Expansion Valves

You are here:   /  Home


Non- invasive flow measurements

Industry

Dipl.-Ing. Dirk Keßlau

+49-351-4081-724

Measurment Dates Available

PDPA - flow fields and particle sizes

3D Phasen- Doppler Particle Anemometer (PDPA)

The Institut für Luft- und Kältetechnik (ILK) uses an ultramodern 3D Phase Doppler Particle Analyzer for non- invasive measurement of velocities of flows and particle sizes in flowing media.  A high performance water cooled Argon- Ion Laser offers the possibility for measuring particle sizes (0.5 - 800 µm) and flow rates (from 0 m/s to supersonic) even in zones of mist or vapour.

Measurands

This measurement technique allows the detection of temporally and spatially velocity fields (3D) in high resolution without influencing the flow even in combustion engines and sprays. Of particular interest is the measurement of aerosols of fluids with a high vapour pressure (including water) because their particle size distribution change in sampling systems and analyzers due to evaporation processes.

Measuring principle

The example below describes the measuring principle for one spatial direction.

In a limited measuring volume two laser beams intersect (figure 1, left) forming an interference pattern (figure 1, center). A particle crossing the measuring volume scatters light with the Doppler frequency fD which is proportional to the velocity of the particle. Velocity u can be calculated as the product of Doppler frequency and the distance of the fringes of the interference pattern (δf): u = δf⋅fD If the frequency of the two intersecting laser beams is equal, a stationary interference pattern is formed. If two particles equal in the amount of speed but with opposing directions of flight cross the measuring volume scatterd light equal in Doppler frequency is detected. It is not possible to determine the direction of flight. Technically this problem is solved by a frequency shift between the laser beams. This results in a moving interference pattern. Thereby light scattered by a particle has a frequency f of Δf ± fD depending of the direction of flight. Besides determination of the flow direction measurement of small flow rates becomes possible. The droplet size determination is based on one of the Doppler signals (figure 1, right) detected on three spatially separated detectors. The separation of the detectors causes a phase shift of the signal which correlates with the curvature radius of the droplets. The knowledge of the curvature radius allows the determination of the radius of the droplets. Furter information an brochures can be found at TSI Inc..

Services: measurement and testing

The PDPA allows for example the determination of flow rates and particles sizes of sprays, the evaluation of droplet separators and the measurement of velocity fields behind duct installations. The following figure as an example shows the flow profile of a flat suction hood.

By the help of this data you are able to benchmark or improve the performance of your products and evaluate the results of your flow simulations. If you have got other flow problems we would also like supporting you solving them.

Consulting and Research Services

You wish to develop your products? Due to our long- standing experience in flow and aerosol measuring techniques and our equipment with the recent measuring instruments we are able to support you. 


Your Request

Further Projects

Image

Low Temperature Tribology

Tribological studies at cryogenic temperatures

Image

Investigation of coolants

Secondary loop refrigerants

Image

Refrigerants, lubricants and mixtures

Determination of working fluid properties

Image

Reduction of primary noise sources of fans

...using numerical and experimental methods with contra-rotating axial fan

Image

Software for technical building equipment

Design cooling load and energetic annual simulation (VDI 2078, VDI 6007, VDI 6020)