Image Low Temperature Tribology
Image Helium extraction from natural gas
Image Solar Cooling
Image Micro fluidic expansion valve
Image State of system and failure analyses
Image Pulse-Tube-Refrigerator with sealed compressor
Image Thermostatic Expansion Valves
Image Testzentrum PLWP at ILK Dresden
Image Hydrogen and methane testing field at the ILK
Image Membrane-based Air Conditioning
Image Low noise and non metallic liquid-helium cryostat
Image Test procedures for electrical components
Image High Capacity Pulse Tube Cooler
Image Investigation of coolants
Image Low Temperature Measuring Service
Image Calibration of Low Temperature Sensors

You are here:   /  Home


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-684

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects

Image

Prüfverfahren für Außenluftfilter

Bewertung von biologisch aktiven Außenluftfiltern

Image

Textiler Wärme- und Stoffübertrager in KVS-Systemen

Enthalpierückgewinnung zwischen örtlich getrennten Luftströmen

Image

Controlled Rate Freezing-Gerät für Multiwellplatten (CRF-Multi)

Preisgünstige Kryokonservierung biologischer Proben

Image

Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik

autarker Betrieb wassergekühlter Kompressoren mittels add-on


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG