Aktuelle Forschungsprojekte

Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Heat2Power
Image Non- invasive flow measurements
Image Investigation of coolants
Image Pulse-Tube-Refrigerator with sealed compressor
Image Micro heat exchangers in refrigeration
Image Panel with indirect evaporative cooling via membrane
Image Influenced melting point of water by magnetic field
Image Testzentrum PLWP at ILK Dresden
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Cool Up
Image Test rigs for refrigeration and heat pump technology
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Ionocaloric cooling
Image Calibration leak for the water bath leak test

You are here:  Home /  Research and Development


Intelligent innovative power supply for superconducting coils

Dr. Andreas Kade

+49-351-4081-5117

Compact, powerful power supply with 4-quadrant converter

The aim of the R&D project is the development of an intelligent innovative power supply as a 4-quadrant controller and energy storage device, which consists of a communicating system between quench protection and current flow control at the superconductor. The development shall be characterized by safety, compactness, accuracy, user friendliness, good price-performance ratio and modularity. The combination of cryogenic and warm electronics will provide significant advantages.
The functional model developed and constructed for this purpose has the following parameters and properties:

  • 4-quadrant power supply with ± 25 V and ± 14 kA
  • Constant voltage quench protection system
  • Cryogenic switch (cryogenic)
  • Energy storage system

The components for the energy storage system consists of individual cells with a capacity of 3000 F and a voltage of 2.7 V. 51 modules are connected in parallel, each with 10 individual cells, to form a capacitor bank. This results in a capacity of 15,300 F and a voltage of 25 V. A 3 kA, 30 V device serves as power supply, which has already been successfully tested on a cryogenic power supply.
In the next step, the configured capacitor modules for the energy storage and the boards of the 4-quadrant controller, see Figure 1, were combined in three switch cabinets, see Figure 2. The completed switch cabinet is shown in Figure 3. First results were presented at the 16th Cryogenics in October 2021.
 


Your Request

Further Projects - Research and Development

Image

Influenced melting point of water by magnetic field

Controlled sub-cooling of products in freezing processes

Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Behavior of multiphase cryogenic fluids

experimental und numerical investigations