Aktuelle Forschungsprojekte

Image Air-flow test rig for fan characteristic measurement
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Cold meter
Image IN-SITU SWELLING BEHAVIOUR OF POLYMER MATERIALS IN FLAMMABLE FLUIDS
Image Innovative small helium liquefier
Image Thermal engines
Image Micro heat exchangers in refrigeration
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Reduction of primary noise sources of fans
Image Intelligent innovative power supply for superconducting coils
Image Investigation according to DIN EN ISO 14903
Image Micro fluidic expansion valve
Image Laseroptical measurement
Image Heat2Power
Image Modular storage system for solar cooling
Image Characterisation of Superconductors in Hydrogen Atmosphere

You are here:  Home /  Research and Development


Low noise and non metallic liquid-helium cryostat

Industry and Research Institutes

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Low-noise Magnetic Field Cryostat for SQUID-Applications

Technical Data for the Cryostats

parametervalue
volume of liquid helium5 to 12 litre (other volume possible)
time to complete evaporation of helium3 to 7 days (depends on size)
heat load0.1 W (in standby operation)
rate of helium evaporation≤ 3 litre / day
holding time of the liquid heliumup to 4 days without refilling
initial noise of the cryostat< 3 fT / Hz½
helium leak test (He-vessel)< 1 × 10-11 mbar l / s

ILK Dresden developed low noise magnetic field and non metallic helium cryostats made of GRP (glass reinforced plastics) with a high helium and vacuum holding time.

The cryostats can operate in a direction independent operation mode (tiltable arrangement) and hence they are suitable for a plurality of several applications.

The ILK concept offers much lower permeation rates inside the He-reservoir as comparable models from other manufacturers and is therefore perfect for SQUID (superconducting quantum interference device) applications and other long-term measurements.
 
The technical design of the cryostats is thus predestined for future sensor generation.

Specification

  • suitable for the cooling of SQUID-Sensors
  • non-metallic (GRP)
  • fast filling with LHe via thermosiphon
  • GRP exhaust gas cooled radiation shield for high efficiency.
  • small cold-warm distance feasible
  • low maintenance 
  • other design variants possible on costumer request

Low noise magnetic field

The low-noise magnetic field of the cryostat was tested in the magnetically shielded room BMSR-1 of PTB Berlin and is smaller than the lowest resolution limit of the measurement system used, see figure below.


Your Request

Further Projects - Research and Development

Image

Low Temperature Measuring Service

Measurement of Thermal Properties at Low Temperatures