Aktuelle Forschungsprojekte

Image Low Temperature Measuring Service
Image Intelligent innovative power supply for superconducting coils
Image Verification of storage suitability of cryo tubes
Image Tribological investigations of oil-refrigerant-material-systems
Image Optimizing HVAC operation with machine learning
Image Low Temperature Tribology
Image Brine (water)-water heat pump
Image Software for technical building equipment
Image 3D - Air flow sensor
Image High Capacity Pulse Tube Cooler
Image Energy efficiency consulting - cogeneration systems
Image Reducing the filling quantity
Image Non- invasive flow measurements
Image Humidifier System for High-Purity Gases
Image High temperature heat pump
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings

You are here:  Home /  Research and Development


Thermal engines

Industry

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

Power Generation from Waste Heat

Principally every refrigeration process could also work as a power cycle. In this way an energy consuming machine which provides a temperature below the ambient temperature turns into a heat engine operating between the ambient and a higher temperature. In a first step cryogenic refrigeration cycles are used reversely as heat engines, as they can handle large temperature gradients.

Thermal engines similar to the Stirling cycles

In cooperation with FOX exhaust systems, the ILK Dresden has developed a waste heat recovery system. The thermal engine dedicated for the car exhaust gas system was now presented at the International Motor Show (IAA, 2011) in Frankfurt for the first time.

With the aid of a model the functionality was demonstrated impressively.

The prototype will deliver an electrical power of 2 kW, at an exhaust gas temperature between 300 and 500°C (570 to 930°F). Currently optimization work, mainly related to generator, is underway. The figure below shows the illustration of the thermal engine in an exhaust tract.

Thermal engines related to other thermodynamic cycles

With several industrial partners heat engines are under development, which operate according to the following thermodynamic cycles:

  • closed and open Joule process
  • valve less Ericsson process

Your Request

Further Projects - Research and Development

Image

Characterisation of Superconductors in Hydrogen Atmosphere

Are superconductors really compatible with hydrogen?

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825