Aktuelle Forschungsprojekte

Image IN-SITU SWELLING BEHAVIOUR OF POLYMER MATERIALS IN FLAMMABLE FLUIDS
Image Measurements on ceiling mounted cooling systems
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Thermostatic Expansion Valves
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Test rigs for refrigeration and heat pump technology
Image Air-flow test rig for fan characteristic measurement
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Corrosion inhibitor for ammonia absorption systems
Image Micro fluidic expansion valve
Image Tribological investigations of oil-refrigerant-material-systems
Image Investigation according to DIN EN ISO 14903
Image Investigation of materials
Image Certifiable connection types in cryogenics
Image State of system and failure analyses

You are here:  Home /  Research and Development


Thermostatic Expansion Valves

Industry

Dr.-Ing. Matthias Böhm

+49-351-4081-5211

Does the TXV function correctly?

We support the industry in the development of energy-efficient vapor-compression refrigeration system and compression heat pumps.

The ILK Dresden offers the following services for you:

The ILK Dresden have been active in the field of performance testing of refrigeration compressors and condensing units for over 20 years.

Our offer includes also the investigation of thermostatic expansion valves (TEV) with external temperature sensors.

The tests of the TEV are carried out on a suitable refrigeration cycles (fig. 2), taking into account the following standards

  • AHRI 750 (2007),
  • ANSI/ ASHRAE 17 (2008, fig. 1) and
  • ASERCOM-Statement (9_GER_Dimensionierung_von_TXV_2011)

Current calibrations of the measuring systems are a matter of course.

The test can be carried out with the refrigerants R134a, R404A, R407A, R407C, R407F, R448A, R513A, R452A up to a mass flow of 400 kg/h (~20 kW for R134a).

Additional offerings

The following influences on the valve behaviour can be investigated

  • run-in period
  • hysteresis
  • transient tests / time constant
  • pressure losses
  • sub cooling
  • ambient temperature
  • critical pressure ratio

Your Request

Further Projects - Research and Development

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination

Image

Electrical components in refrigeration circuits

High voltage tests under real conditions