Aktuelle Forschungsprojekte

Image Pulse-Tube-Refrigerator with sealed compressor
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Tribological investigations of oil-refrigerant-material-systems
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Software for technical building equipment
Image Performance tests of refrigerant compressors
Image Intelligent innovative power supply for superconducting coils
Image 3D - Air flow sensor
Image Multifunctional electronic modules for cryogenic applications
Image Test procedures for electrical components
Image Practical training, diploma, master, bachelor
Image Measurements on ceiling mounted cooling systems
Image IO-Scan - Integral measuring optical scanning method
Image Thermal engines
Image Lifetime prediction of hermetic compressor systems

You are here:  Home /  Software Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Software Development

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Multifunctional electronic modules for cryogenic applications

Electronic with less wiring effort - more than 100 sensors via one feedthrough