

Institute of Air-handling and Refrigeration (ILK Dresden) Experimental experiences with an enhanced directly air-cooled water/LiBr absorption chiller 6th International Conference Solar Air-Conditioning, Rome, 2015

3.4U

www.ilkdresden.de

ILK Dresden – R&D company

- Founded in 1964
- Re-established as independent research institute in 1990
- Employees: 145
- Academics: 72 %
- mean age: ~44
- Laboratory area: ~3000 m²
- Test rigs: ~56
- Phys. / Chem. Laboratories: 25

Introduction

Problems in systems with small scale chillers

- Complexity of the systems
- Auxiliary energy demand of the system
- Investment cost
- Interface problems because of different crafts (might be) involved
- Possibly high error rate during installation
- Limited applicability of evaporative re-cooling systems but high re-cooling sensibility of the cycle

Directly air-cooled absorption chiller

 Reduction of the auxiliary energy demand by using directly air-cooled absorber and condenser
 no cooling water circuit

- Less system components
- Lower complexity
- Lower installation effort
- Free cooling at ambient temperatures < 12 °C</p>

Aimed specifications for the development

External Fluid	Nominal Condition	Operating Range
Chilled water temperature (water w. 20 % Glycol)	18 °C / 13 °C (in/out)	6 °C 20 °C (out)
Heating water temperature (water w. 20 % Glycol)	95 °C / 87 °C (in/out)	75 °C … 105 °C (in)
Ambient air (for re- cooling)	32 °C / 42 °C (in/out)	10 °C 32°C (in)
Cooling capacity	8 kW	Up to 11 kW

- Condenser and Absorber directly air-cooled
- Frost resistance
- Auxiliary energy consumption at nominal conditions < 60 W_{el}/kW₀ ("EER" > 16)

Air-cooled absorber and condenser needed

- Water as refrigerant and air as cooling medium
 big free section needed
- Falling film heat exchangers with vertical, highly finned tubes most suitable option
- Absorber-Tubes additionally structured inside

- Influence of weather and solar radiation
 - Risk of freezing
 - higher and more variable cooling temperature
- Special arrangement of heat exchangers
 - At critical temperatures all refrigerant flows into LiBrsolution in the sump of the absorber
- Anti-freezing additives
- speed of ventilation directly coupled to the performance of the chiller

Directly air-cooled absorption chiller

Previous functional model

- 1 = generator
- 2 = condenser
- 3 = absorber
- 4 = evaporator
- 5 = fan

The enhanced chiller

Results: Performance in the test facility

24.09.2015

6th International Conference Solar Air-Conditioning, Rome, 2015 - M. Richter 9

measured

Results: Exemplary load profile over a day

t_{ambient air} ≤ 31 °C

- before 12:00 $t_{hot water, in} < 60 \ ^{\circ}C$ and $\dot{Q}_0 < 2 \ kW$ \Rightarrow shut down
- 5,5 h operation,
 providing cold for
 AC of offices
 Q₀ from 8 to 4 kW,
 chilling water
 storage from
 20 °C to 10 °C

Results: Influence of weather

Solar radiation and external flow rates affect performance

Wind and rain can increase cooling capacity

24.09.2015

Results: Comparison with design conditions

Criteria	Design target	Reached so far
Cooling capacity	8 kW with inlet temperatures: 95 °C; 32 °C; 18 °C	8,04 kW with inlet temperatures: 95 °C; 32 °C; 18 °C
Thermal EER	0,71	0,73
Auxiliary energy demand at nominal conditions	0,50 kW 62,5 W _{el} /kW ₀ EER _{el} : > 15	1,04 kW 129 W _{el} /kW ₀ EER _{el} : > 7,5

- Cooling capacity and thermal efficiency as designed
- **EER**_{el} of 7.5 quite good for a low capacity chiller but below expectations
- Axial fan is by far the biggest power consumer Several improvements identified (e.g. speed control of the fan)
- In field test EER_{el} of 15 at Q₀ = 7 kW with 78 °C hot water inlet / 21 °C ambient / 8 °C chilled water outlet

Varying ambient temperatures

- Challenging speed control of the fan good EER_{el}-values required cooling capacity
- Air-cooled chiller generates cooling immediately after start in the morning
 LiBr-solution is cooled by low night-time ambient temperatures and absorption process starts promptly when solution is distributed in the absorber even without operation of the fan.

- A directly air-cooled water/LiBr-absorption chiller with a nominal capacity of 8 kW was developed
- Successful and stable operation stable as well in lab as in field under variable ambient conditions
- Electrical EER-values of up to 15 have been achieved
- Decrease of air side pressure drop
 \$\Rightarrow\$ optimization of air flow (e.g. flow grids and baffles)
 \$\Rightarrow\$ further reduction of the electrical power demand
- More data and optimisation for part load conditions is needed

www.ilkdresden.de

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

3.4U

Thanks for your attention!

ILK Dresden

Department of Applied Energy Engineering Bertolt-Brecht-Allee 20; 01309 Dresden; Germany

Dipl.-Ing. Myrea Richter

Tel.: E-Mail: +49 351 4081-710 myrea.richter@ilkdresden.de

www.ilkdresden.de