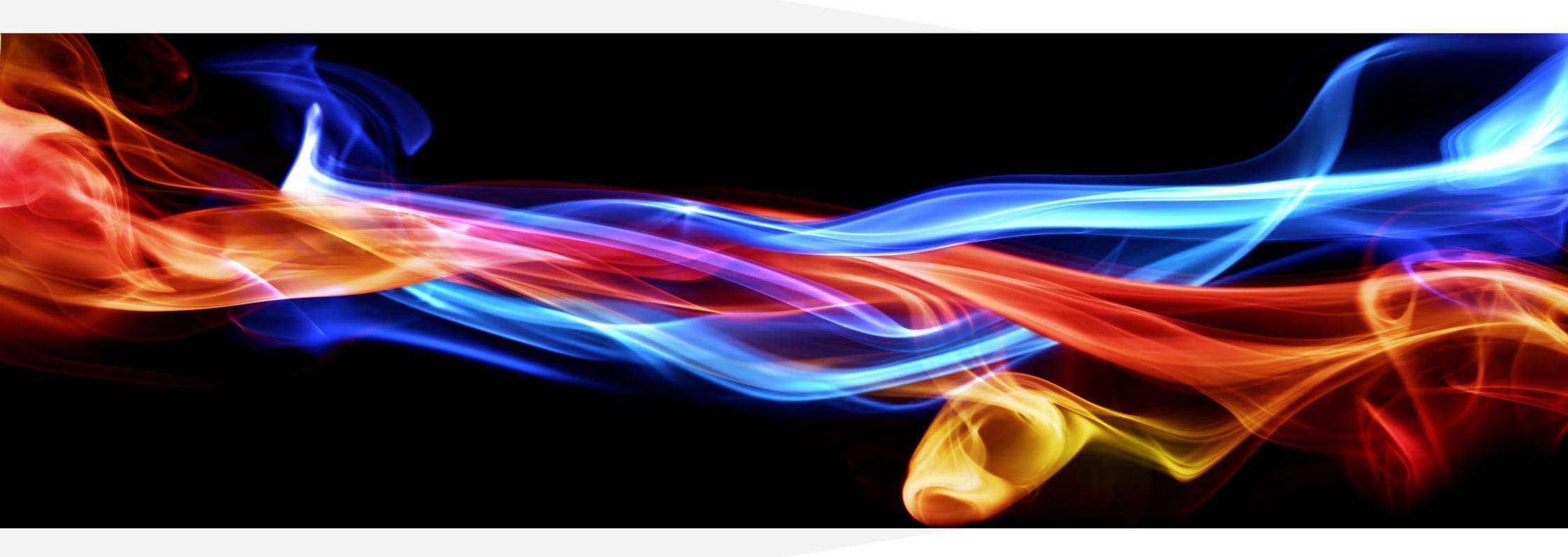


ILK Dresden



Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

INNO-KOM

49MF180106

Januar 2019 - Juni 2021

Dr.-Ing. Karsten Hackeschmidt

PCM-Kurzzeitspeicher mit alternierender Luftförderrichtung

Entwicklung eines neuen effizienten und kompakten PCM-Kurzzeitspeichers mit periodisch wechselnder Luftförderrichtung für die dezentrale Lüftung

Neue Lösungsansätze für Push Pull Funktionssystem

PCM-Lüfter

- Ein neuer Kurzzeitspeicher aus formstabilen PCM-Elementen zur Erhöhung Speicherdichte
- Eine neuen Luftfördereinheit mit einem druckstabilen Radialventilator
- Ein drehbarer Filter, der in Abhängigkeit der Luftförderrichtung immer von außen nach innen durchströmt wird (für Zylinderbauweise)
- Ein neues Gerätekonzept als Schallschutzsystem ohne Reduzierung des Luftvolumenstroms

Anwendung

- Für dezentrales Lüftungssystem in Wohnungen und Häusern
- Für Neubau und Sanierung
- Installation in Außenwänden ab 370 mm Dicke

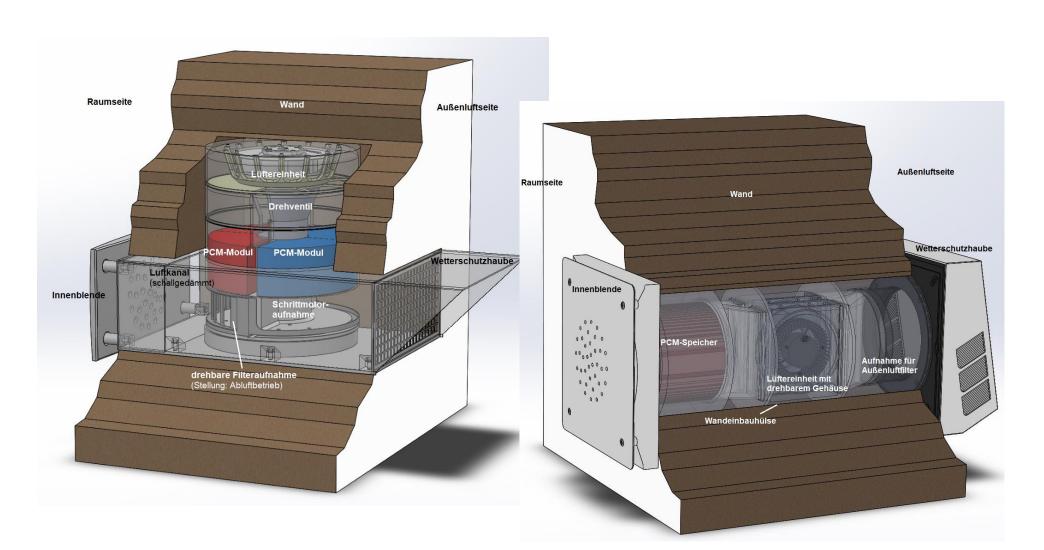


Bild 1: PCM-Lüfter-Demonstratoren in den Bauausführungen "Zylinder" und "Rohr"

Projektergebnisse

- Es sind zwei neue Gerätevarianten entwickelt worden, die mehr als 85 % der Wärme rückgewinnen können.
- Die Gerätevariante "Zylinder" hat zwei nierenförmige PCM-Speicherelemente und einen Filter, der sich in Abhängigkeit der Luftförderrichtung in den Ansaugquerschnitt dreht. In der maximalen Leistungsstufe werden 35 m³/h Luft gefördert.
- Die Gerätevariante "Rohr" verfügt im Vergleich zu den marktgängigen Keramikspeichern über kleinere PCM-Speicher und eine Antriebseinheit mit drehbarem Ventilatorgehäuse. Die neuen Komponenten können in den marktgängigen Ausführungen nachgerüstet werden. Es werden mehr als 40 m³/h Luft in der maximalen Leistungsstufe gefördert.
- Beide Ausführungen verfügen über eine hohe Normschallpegeldifferenz.

Parameter	Einheit	Bauausführung "Zylinder"	Bauausführung "Rohr"
Maximaler Luftvolumenstrom	m³/h	35	42
Bezugs- volumenstrom	m³/h	22	22
Wärmerück- gewinnungsgrad (bei Bezugsvolumenstrom)	%	83 (60 s Umschaltdauer)81 (90 s Umschaltdauer)78 (120 s Umschaltdauer)	91 (60 s Umschaltdauer)88 (90 s Umschaltdauer)84 (120 s Umschaltdauer)
Normschall- pegeldifferenz	dB	51 (370 mm Wanddicke)	50 (500 mm Wanddicke)
Eigengeräusch (bei Bezugsvolumenstrom)	dB(A)	47 (Zuluft) 45 (Abluft)	45 (Zuluft) 43 (Abluft)

Bild 2: Leistungsparameter für die PCM-Lüfter-Demonstratoren

