Aktuelle Forschungsprojekte

Image Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Laseroptische Strömungsmessung
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Kalibrierleck für die Wasserbad Dichtheitsprüfung
Image Untersuchungen an Deckenkühlgeräten
Image Cool Up
Image Apparatur und Verfahren zur Degradationsprüfung
Image Lüftungsgerät mit akustischer Regelungsoption
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Tieftemperatur-Messdienstleistungen
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Mikrofluidisches Expansionsventil
Image Leistungsmessung an Wärmeübertragern

Sie befinden sich hier:   /  Startseite


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte

Image

Leistungsprüfung an Verflüssigungssätzen

Wie effizient ist der Verflüssigungssatz ?

Image

Elektrische Auskopplung aus einer Expansionsturbine

Kostengünstige Umwandlung kleiner elektrischer Leistungen

Image

Zustands- und Schadensanalysen

Ist der Zustand des Kältemittelverdichters ok?

Image

Thermostatische Expansionsventile

Arbeitet das TEV eigentlich richtig?

Image

Testzentrum PLWP am ILK

Prüfung Fluid-Energiemaschinen und kältetechnische Bauteile