Aktuelle Forschungsprojekte

Image Innovative Fertigungstechnologien für Kryosorptionssysteme
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Solare Kühlung
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Akustik und Schwingungen
Image Mikrofluidisches Expansionsventil
Image Leistungsangebot Laboranalysen
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Selbstoptimierendes Raumluftmanagementsystem
Image IO-Scan – Integral messendes Optisches Scanverfahren
Image Elektronische Multifunktionsmodule für kryogene Anwendungen
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Schalldämpfer mit integrierten Abgaswärmeübertrager

Sie befinden sich hier:   /  Startseite


Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen

EURONORM GmbH

07/2021-06/2023

Dr. rer. nat. Franziska Krahl

+49-351-4081-5421

Eine Alternative zu Chrom(VI)-Verbindungen

Projektleitung: Dr. Franziska Krahl, Dr. Steffen Feja

Ammoniak-Absorptionsanlagen (Kältemaschinen und Wärmepumpen) werden – im Gegen­satz zu elektrisch angetriebenen Kompressions­kältemaschinen bzw. Kompressionswärme­pumpen – mit Wärmeenergie angetrieben. Stammt die Wärmeenergie z. B. aus Solarthermie, Geothermie oder Abwärme, so können diese Maschinen ohne fossile Energieträger betrieben werden. Die eingesetzten Arbeitsstoffe Wasser und Ammoniak sind natürlich vorkommende Verbindungen, leisten keinen Beitrag zur Erderwärmung (GWP = 0) und besitzen auch kein Ozonabbaupotenzial (ODP).

Ammoniak-Absorptionsanlagen werden aus Kostengründen aus Baustahl gefertigt. Ein Nachteil des Arbeitsstoffes Ammoniak ist die Bildung stark ätzender Lösungen mit Wasser. Dies hat zur Folge, dass spätestens bei Antriebstemperaturen größer 90 °C beim Baustahl vermehrt Korrosion einsetzt, was langfristig einen Ausfall der Anlagen zur Folge hätte. Neben dem Einsatz von korrosionshemmenden Substanzen (sogenannten Korrosionsinhibitoren) kann als Alternative der deutlich teurere Werkstoff Edelstahl eingesetzt werden. Die Erfahrung hat jedoch gezeigt, dass trotz der verminderten Korrosion an Edelstahl für den dauerhaften und störungsfreien Betrieb der Anlagen Korrosionsinhibitoren zugesetzt werden müssen. Bis heute werden dafür Chrom(VI)-Verbindungen, hauptsächlich Natriumchromat oder Natriumdichromat, verwendet. Andere bekannte Inhibitoren bieten deutlich geringeren Korrosionsschutz und sind im Falle von Baustahl für Temperaturen von oberhalb 90 °C nicht im Einsatz.

Allerdings ist der Einsatz von Cr(VI)-Verbindungen aufgrund ihrer krebserregenden und toxischen Eigenschaften innerhalb der EU seit 2017 stark eingeschränkt. Für das Inverkehr­bringen und die Verwendung von Cr(VI)-Verbindungen müssen Ausnahmeregelungen beantragt werden. Der dafür notwendige regulatorische und verwaltungstechnische Mehraufwand ist erheblich; deutlich problematischer ist jedoch die damit einhergehende und andauernde Weiterverwendung einer giftigen, krebserregenden und umweltschädlichen Substanzklasse. Gerade für das innovative Segment der Absorptionstechnik, der Erzeugung von Kälte aus Abwärme, wird dadurch die Umweltfreundlichkeit der Technologie gemindert.

Ziel des Projektes ist die Identifikation eines Korrosionsinhibitors für industrielle Ammoniak-Absorptions-Anlagen, welche Temperaturen von bis zu -60 °C bereitstellen, zum Ersatz von Chrom(VI)-Verbindungen. Dieser soll folgende Kriterien erfüllen:

  • Korrosionsschutzwirkung bis einschließlich 180 °C (Antriebstemperatur), auch für Baustahl
  • Verhinderung der Entwicklung nicht-kondensierbarer Gase
  • Korrosionsschutzwirkung im alkalischen pH-Bereich
  • Korrosionsschutzwirkung bei Abwesenheit von Sauerstoff
  • Langzeitstabilität und Nicht-Flüchtigkeit
  • Gleiches Korrosionsschutzniveau wie Chrom(VI)-Verbindungen

Mittels eines innovativen Matrix-Schnelltests sollen zunächst zahlreiche Chemikalien und Substanzkombinationen bezüglich ihres Einsatzpotentials als Korrosionsinhibitor für Edelstahl und Baustahl in Ammoniaklösungen bewertet werden. Im Anschluss sollen, unter Simulation der spezifischen Korrosionsbedingungen, in Laborversuchen aussichtsreiche Kandidaten weitergehend untersucht werden.

Die Wirksamkeit möglicher Cr(VI)-freier Inhibitoren soll auch in realen Absorptionskreisläufen (Demonstratoren) und in Feldtests geprüft werden. Hersteller und Betreiber von Anlagen können diesbezüglich gern mit uns in Kontakt treten.


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Pulse-Tube Kryokühler

für kryogene Hochleistungsanwendungen

Image

Pulse-Tube-Kühler mit Hermetikverdichterantrieb

mobil einsetzbar u.a. für die Wasserstofftechnologie

Image

Tieftemperaturtribologie

Tribologische Untersuchungen bei kryogenen Temperaturen

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung