Image Lachgas (N2O) als Kältemittelersatz für R-23
Image 3D - Strömungssensor
Image Regenerationsmodul für dezentrale Trocknung
Image Zustandsüberwachung für Außenluftfilter
Image Sublimation von Trockeneis zur Tieftemperaturkühlung
Image Numerische Simulation und experimentelle Untersuchung des Wärmeübergangs in turbulenten Nanofluiden
Image Tieftemperatur-Versuchsanlagen und Materialprüfkammern
Image Diplom, Praktikum, Master, Bachelor
Image Prüfbad-Haube
Image Kryostate aus GFK oder Metall
Image CO2-Test
Image Komponenten für Kältespeichersysteme
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Thermische Speicherung mit PCM
Image Laseroptische Strömungsmessung
Image Strömungssimulation CFD

Sie befinden sich hier:   /  Startseite


Untersuchung von Kühlsolen

Industrie

auf Anfrage

Dr. Steffen Feja

+49-351-4081-767

Arbeitsstoffdaten für Sekundärkreisläufe

Arbeitsstoffdaten für Sekundärkreisläufe

Norm:

ASTM D 1177

Gerät:

Durchsichtkryostat

Prinzip:

Ein Reagenzglas mit der zu testenden Kühlsole wird in einem Durchsichtthermostaten unter ständigem  Rühren abgekühlt, bis eine Kristallbildung ohne merklichen Temperaturanstieg einsetzt. Die Temperatur beim Einsetzen der Kristallbildung bezeichnet man als Frostpunkt/Frostsicherheit.

Temperaturbereich:

 –70 °C bis RT

Probemenge:

100 ml

 [top:nach oben]

 

Stockpunkt

Norm: 

in Anlehnung an DIN ISO 3016

Gerät:

Dewar mit Rührer/Durchsichtkryostat

Prinzip:

Die zu prüfende Kühlsole wird in 3 K Schritten langsam abgekühlt, bis bei einer bestimmten Temperatur die Probe nicht mehr fließfähig ist. Die Temperatur bei der die Probe gerade noch fließfähig war und durch 3 teilbar ist wird angegeben.

Temperaturbereich: 

–70 °C bis RT

Probemenge:

100 ml

 [top:nach oben]

 

Flammpunkt 

Norm:

DIN ISO 2592

Gerät:

Offener Tiegel nach Cleveland

Prinzip: 

Die Probe wird in einem offenen Tiegel erhitzt und in Intervallen eine Flamme über die Oberfläche geführt. Der Flammpunkt ist die niedrigste Temperatur, bei der ein zündfähiges Gemisch mit der Luft entsteht. Bei Entfernen der Zündquelle kommt die Verbrennung zum erliegen.

Probemenge:

100 ml

 [top:nach oben]

 

Spezifische Wärmekapazität

Norm:

ASTM D 3947 bzw. E 1269

Gerät:

Dynamisches Differenzkalorimeter Setaram µDSC VII bzw. DSC Q200 TA Instruments

Prinzip:

Die Differenz zwischen der Wärmemenge, die benötigt wird um die Temperatur einer Probe und einer Referenz zu erhöhen, wird als Temperaturfunktion ermittelt.

Temperaturbereich:

-45 °C bis +90 °C im Druckbereich bis 20 bar
-180 °C bis +700 °C bei Umgebungsdruck 

Druckbereich:

1 bis 100 bar

Empfindlichkeit:0,2 µW

Messbereich:

1.7 - 2,5 kJ kg–1 K–1

Probemenge:

10 ml

 [top:nach oben]

 

Spezifische Wärmeleitfähigkeit

Gerät:

Messzelle für stationäre Zylinderspaltmethode

Prinzip:

Die zu messende Flüssigkeit bzw. das zu messende Gas befindet sich in einem Spalt, der von einem beheizten zylindrischen Innenkörper und einem entsprechend geformten Außenkörper gebildet wird. Dem Innenzylinder wird eine definierte Heizleistung zugeführt und, nachdem sich ein stationärer Wärmefluss eingestellt hat, wird die Temperaturdifferenz der Flüssigkeit im Messspalt mit Hilfe von Pt100-Widerstandsthermometern gemessen.

Temperaturbereich:

-40 °C bis 140 °C

Druckbereich:

1 bis 100 bar

Messbereich:

50 - 1000 mW • m–1 • K–1

Probemenge:

250 ml

 [top:nach oben]

 

Dampfdruck

Gerät:

Dampfdruckmesszelle (~ 500cm3) mit Magnetkupplung

Prinzip:

Die Messzelle wird temperiert und der Dampfdruck mittels direkter Methoden gemessen. Die Messunsicherheit beträgt nur 0,15 % vom höchsten Wert des einegesetzten Drucksensores (Bsp. 1, 10, 30, 300 bara).

Temperaturbereich:

-60 bis 140 °C

Druckbereich:

 10-3 bis 160 bar

Probemenge:

500 ml

 [top:nach oben]

 

Dampfdruck von flüssigen Schmiermitteln (von wässrigen Lösungen) nach der Methode des Isoteniskopes

Norm:

ASTM D 2879

Gerät:Isoteniskop (Eigenbau)

Prinzip:

 

Die zu untersuchende Flüssigkeit befindet sich in einem U-förmigen Rohr. Nach dem Ausheizen wird die Flüssigkeit schrittweise abgekühlt. Im U-Rohr entsteht ein Dampfraum aus gasförmigen Flüssigkeitsmolekülen (Öl oder Kühlsole). Die Flüssigkeit dient dabei selber als Sperrflüssigkeit. Mit Hilfe von Stickstoff werden die Menisken im U-Rohr auf gleicher Höhe gehalten. Der Druck des Stickstoffes entspricht dann dem Druck der Flüssigkeit und kann mit hinter geschalteten Drucksensoren abgelesen werden.

Dieses Verfahren ist eine in REACH erwähnte Methode zur Dampfdruckmessung von Flüssigkeiten.

Temperaturbereich:

-40 °C bis 180°C

Druckbereich:

 1 bis 1000 mbar

Probemenge:

250 ml

 [top:nach oben]

 

Dichte

Norm:

DIN 51757

Gerät:

Biegeschwingermesszelle DPR 412 Y /DMA 60 (Anton Paar)

Prinzip:

Ein U-Rohr mit einer definierten Probenmenge wird in Schwingung versetzt. Die Eigenfrequenz der Messanordnung ist von der Masse abhängig und dient der Berechnung der Dichte.

Temperaturbereich:

-20°C bis 140 °C

Druckbereich:

1 bis 160 bar

Messbereich:

600 bis 1300 kg • m–3

Viskosität:

< 15000mm2/s

Probemenge:

250 ml

 [top:nach oben]

 

Dynamische Viskosität

Norm:

DIN 53019

Gerät:

HAAKE Viscotester VT 550 (Searle-Rotationsviskosimeter)

Prinzip:

Die zu untersuchende Flüssigkeit befindet sich in einem Ringspalt zwischen zwei koaxialen Zylindern, von denen der eine mit konstanter Drehzahl rotiert (Rotor), der andere ruht (Stator).  Gemessen wird der Fließwiderstand der Probe gegen eine vorgegebene Drehzahl.

Temperaturbereich:

-40 bis 100°C

Druckbereich:

1 bar

Messbereich:

3 mPa•s bis 5000 mPa•s

Probemenge:

250 ml

Norm:

ASTM D 445 & D 7483

Gerät: 

Schwingkolbenviskosimeter der Firma CVi

Prinzip:

Ein Kolben wird elektromagnetisch in einem Zylinder auf und ab bewegt. Die Zeit, welche für einen Durchlauf benötigt wird, ist direkt mit der Viskosität der Flüssigkeit verbunden.

Temperaturbereich:

-40 bis 140°C

Druckbereich:

1 bis 160 bar

Messbereich:

0,25 -20000 mPa•s

Probemenge:

50 ml

 [top:nach oben]

 

[#mark9]Reservealkalität

Norm:

ASTM D 1121

Gerät:

Methrom Tritrino

Prinzip:

Reservealkalität sind die Milliliter einer 0,100 N HCl, welche benötigt werden um 10 ml einer Probe bis zu dem pH-Wert 5,5 zu titrieren

Probemenge:

10 ml

 [top:nach oben]

 

Korrosionstest

Norm:

ASTM D 1384

Prinzip: 

Pakete mit Metallprüfkörpern werden in einer temperierten und belüfteten Kühlsole ausgelagert. Die Metallprüfkörper werden vor und nach der Prüfung optisch begutachtet sowie gewogen. 

Temperatur: 

88 ± 2°C

Probemenge: 

3 l (Dreifachbestimmung)

 

[top:nach oben]

DSC Messungen

Norm:

diverse

Gerät:Dynamisches Differenzkalorimeter µDSC VII – Setaram bzw. DSC Q 200 – TA Instruments

Prinzip: 

 

Neben der Wärmekapazität fester und flüssiger Stoffe sind folgende Stoffparameter  mit der dynamischen Differenzkalorimetrie am ILK messbar:

  • Schmelz- und Kristallisationsenthalpien und -temperaturen
  • Speicherkapazität von PCM nach RAL-Standardverfahren
  • Glasübergang von Kunststoffen
  • Zersetzungsenthalpien und -temperaturen
  • Reaktionsenthalpien (auf Anfrage auch druckabhängig)
  • Auf Anfrage: Absorptionsenthalpie von Gasen in Gasspeichermaterialien (z.Bsp. Zeolithe)

Temperatur:

-40 °C bis 750 °C

Druckbereich:

1 bar (gesamter Temperaturbereich); 1 bis 100 bar (-45 bis 90 °C)

Probemenge:1 ml bzw. 1 g

 

 [top:nach oben]

Weitere Messungen können auf Anfrage durchgeführt werden.


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Diplom, Praktikum, Master, Bachelor

Studentische Arbeiten - Ausbildung am ILK

Image

Mollier hx-Diagramm

Prozessdarstellung im hx-Diagramm

Image

Leistungsmessung an Wärmeübertragern

Wärmeübertrager korrekt dimensioniert?

Image

MetPCM

Metallverkapselte Hochtemper PCM

Image

Regenerationsmodul für dezentrale Trocknung

Energiespeicher und Sorption dezentral im Einsatz


Kontakt

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Sekretariat der Geschäftsleitung

+49-351-4081-520

+49-351-4081-525

Bild Zuse Mitglied Bild SIG