Aktuelle Forschungsprojekte

Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Micro fluidic expansion valve
Image Optimizing HVAC operation with machine learning
Image High Capacity Pulse Tube Cooler
Image Influenced melting point of water by magnetic field
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Electrical components in refrigeration circuits
Image Calibration leak for the water bath leak test
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Energy efficiency consulting - cogeneration systems
Image Panel with indirect evaporative cooling via membrane
Image Air-water heat pumps
Image All-in-one device for freeze-drying and production of biomaterial
Image Modular storage system for solar cooling
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures

You are here:   /  Home


Behavior of multiphase cryogenic fluids

Matthias Schneider

+49-351-4081-5126

experimental und numerical investigations

With the help of this basic research project, processes that occur during the sudden evaporation of cryogenic media should be better understood, described and evaluated. This should create possibilities for improved design and efficient operation of safety elements and power transmitting components in plants with cryogenic media.
A well-founded theoretical understanding of the dynamic calculation and evaluation of boiling cryogenic media will be developed. In order to obtain, for example, a concrete component behaviour under cryogenic conditions, numerical descriptions are required beyond the design calculations, both for fluid dynamics and for the spatial and temporal change in temperature.
Parallel to this, the experimental basis for the design of complex cryogenic components and systems engineering is being improved.
The objectives and results of the preliminary research project include

  • Calculated parameters from various numerical simulations for essential cryogenic components
  • Extensive experimental results for variations of the underlying geometry, advantageous process control, improved design of components
  • Basic thermodynamic processes in gas chillers
  • Calculation algorithms for the description of dynamic heat transport phenomena
  • Evaluation of critical plant conditions
  • Suitable materials for cryostat components and cryogenic plants
  • Novel components e.g. for small helium mass flows

An application project for the development of heat exchangers for cryogenic multiphase fluids is planned.

Video of the mass transfer rate between the liquid and the vapour phase inside a Venturi tube

If you can not see the video, please use the external link to YouTube.


Your Request

Further Projects

Image

All-in-one device for freeze-drying and production of biomaterial

with automated freezing and sterilisation option

Image

Investigation according to DIN EN ISO 14903

These tests according to DIN EN ISO 14903 are possible at ILK Dresden