Image Certifiable connection types in cryogenics
Image Lifetime prediction of hermetic compressor systems
Image Behavior of multiphase cryogenic fluids
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Influenced melting point of water by magnetic field
Image Practical training, diploma, master, bachelor
Image Calibration of Low Temperature Sensors
Image High Capacity Pulse Tube Cooler
Image Software modules
Image Test rigs for refrigeration and heat pump technology
Image Humidifier System for High-Purity Gases
Image Thermostatic Expansion Valves
Image Low Temperature Tribology
Image Swirl-free on the move...
Image Refrigerants, lubricants and mixtures

You are here:   /  Home


Innovative Manufacturing Technologies for Cryosorption Systems

Euronorm, R&D

Sandra Tippmann

+49-351-4081-614

Vacuum Pumps for UHV and XHV

A cryosorption system is defined as a vacuum pump that captures gas on cryogenic surfaces (gas-binding vacuum pump). Thus pressures lower than 5-12 mbar are obtainable (realisation of UHV - ultrahigh vacuum and XHV - extremely high vacuum). Cryosorption systems rely on very good heat transfer performance. This is currently being achieved with a complex, cost-intensive and risky manufacturing process. Therefore the aim of this project is to develop a new manufacturing technology that does not have this disadvantage.

 

For this purpose, thermodynamically important variables, such as sorption heat and heat transfer resistance were determined mathematically. A test sample was developed and constructed based on these results.

After completion of the design the test sample will be produced.

In the further course of the R&D project a test stand will be set up on which the test sample can be measured. These measurements will be checked and validated in a CFD simulation. With the help of the CFD model, various simulations for future cryosorption systems can be carried out. For example cooling times for different activated carbon masses or the thermal performance under different conditions for the cooling medium can be determined using this method.

Finally the sample production (functional sample) of a cryosorption system made of stainless steel with a precisely defined heat transfer behaviour takes place. The functional model is measured in relation to the cooling performance and pressure loss of the cooling medium and the results obtained will be included into the creation of a process instruction for manufacturing future cryosorption systems.


Your Request

Further Projects

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination

Image

Electrical components in refrigeration circuits

High voltage tests under real conditions

Image

Influenced melting point of water by magnetic field

Controlled sub-cooling of products in freezing processes


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG