Aktuelle Forschungsprojekte

Image Charakterisierung von Supraleitern in Wasserstoffatmosphäre
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern
Image Prolatent
Image Elektrische Komponenten in Kältekreisläufen
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan
Image Solare Kühlung
Image Phasenauflösende numerische Simulation von Suspensionen
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Untersuchungen an Deckenkühlgeräten
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Kältemengenzähler

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Rauscharme, nichtmetallische Flüssig-Heliumkryostate

Magnetisch rauscharm für z.B. SQUID-Anwendungen

Image

Kryostate aus GFK oder Metall

Lageunabhängig, nicht-metallisch, hohe Standzeit für flüssig Stickstoff und flüssig Helium

Image

Strömungssimulation CFD

Wissenschaftliche Untersuchung von Strömungen

Image

Textiler Wärme- und Stoffübertrager in KVS-Systemen

Enthalpierückgewinnung zwischen örtlich getrennten Luftströmen

Image

Controlled Rate Freezing-Gerät für Multiwellplatten (CRF-Multi)

Preisgünstige Kryokonservierung biologischer Proben