Aktuelle Forschungsprojekte

Image Pulse-Tube Kryokühler
Image Tieftemperaturtribologie
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Leistungsprüfung an Kältemittelverdichtern
Image Innovativer Helium-Kleinverflüssiger
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Heat2Power
Image Untersuchungen an Deckenkühlgeräten
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Solare Kühlung
Image Tieftemperatur-Materialprüfkammer
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Heat2Power

Veredlung der Abwärme von Brennstoffzellen

Image

Nichtinvasive Strömungsmessung

PDPA - Strömungsfelder und Partikelgrößen

Image

Thermische Speicherung mit PCM

Von der Speicheraufgabe zur Anwendung

Image

Rauscharme, nichtmetallische Flüssig-Heliumkryostate

Magnetisch rauscharm für z.B. SQUID-Anwendungen

Image

Kryostate aus GFK oder Metall

Lageunabhängig, nicht-metallisch, hohe Standzeit für flüssig Stickstoff und flüssig Helium