Aktuelle Forschungsprojekte

Image Leistungsprüfung an Kältemittelverdichtern
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Intelligente innovative Stromversorgung für supraleitende Spulen
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Software für die TGA-Planung
Image Rauscharme, nichtmetallische Flüssig-Heliumkryostate
Image MetPCM
Image Laseroptische Strömungsmessung
Image Primäre Lärmreduktion an Ventilatoren
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Drallfrei unterwegs...
Image In-Situ-Quellverhalten von Polymeren in brennbaren Fluiden
Image Lebensdauerprognose von Hermetikverdichtersystemen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“

Verbesserung der hygienischen Prävention durch elektrochemische Dekontamination

Image

Wärmekraftmaschinen

Gewinnung elektrischer Energie aus Abwärme

Image

Elektrische Komponenten in Kältekreisläufen

Hochspannungsprüfungen unter Realbedingungen

Image

PerCO

Herstellung neuartiger Sperrschichten an elastomeren Dichtungsmaterialien zur Verminderung der Permeation des Kältemittels R744 (CO2)