Aktuelle Forschungsprojekte

Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Ionokalorische Kälteerzeugung
Image Solare Kühlung
Image Zustands- und Schadensanalysen
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image Strömungssimulation CFD
Image Intelligente innovative Stromversorgung für supraleitende Spulen
Image Software für Prüfstände
Image Energieeffizienzberatung Kraft-Wärme-Kälte
Image Stoffdatenmodule

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Leistungsprüfung an Kältemittelverdichtern

Wie gut ist eigentlich der Verdichter?

Image

Thermische Kälteerzeugung / Absorptionskältetechnik

Kraft-Wärme-Kälte-Kopplung, Fernwärme, Solarthermie oder Abwärme zur Kälteerzeugung

Image

Vakuum-Flüssigeis-Technologie

Flüssigeiserzeugung durch Direktverdampfung

Image

Prüfbad-Haube

Optimiertes Haubenprüfverfahren

Image

Selbstoptimierendes Raumluftmanagementsystem

Echtzeitsimulation von Raumströmungen