Aktuelle Forschungsprojekte

Image Leistungsangebot Laboranalysen
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image Kalibrierung von Tieftemperatursensoren
Image Matrix-Design for Artificial Meat (MADAM)
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Untersuchung von materialabhängigen Parametern
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern
Image KLAR
Image Luft-Wasser Wärmepumpen
Image Messung Isolierverpackung
Image Kältemengenzähler

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Füllmengenreduzierung

Wie viel Kältemittel muss gefüllt werden?

Image

Leistungsprüfung an Verflüssigungssätzen

Wie effizient ist der Verflüssigungssatz ?

Image

Zustands- und Schadensanalysen

Ist der Zustand des Kältemittelverdichters ok?

Image

Thermostatische Expansionsventile

Arbeitet das TEV eigentlich richtig?