Aktuelle Forschungsprojekte

Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Mikrofluidisches Expansionsventil
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Strömungssimulation CFD
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image 3D - Strömungssensor
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Verhalten mehrphasiger kryogener Fluide
Image Software für die TGA-Planung
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher

Sie befinden sich hier:   /  Startseite


Ionokalorische Kälteerzeugung

03/2024 - 08/2026

Dr. Joachim Germanus

+49-351-4081-5412

in Bearbeitung

Ionokalorisches Fest-Flüssigphasen-Kühlverfahren

Die Nutzung kalorischer Effekte für kältetechnische Anwendungen wird bereits seit mehreren Jahren untersucht und diskutiert. Kalorische Effekte in Festkörpern resultieren aus komplexen Wechselwirkungen zwischen ihren atomaren bzw. molekularen Strukturen, die durch mechanischen Druck, Magnetfelder oder elektrische Felder beeinflusst werden. Die zukünftige Nutzung dieser kalorischen Effekte könnte die Entwicklung von Kälteanlagen vorantreiben, die sich durch eine höhere Energieeffizienz und Umweltfreundlichkeit als herkömmliche Kühltechnologien auszeichnen. Im Jahr 2022 schlugen Lilley und Prasher[1] eine Möglichkeit der Kälteerzeugung vor, die auf einem weiteren kalorischen Effekt beruht. Der von ihnen so bezeichnete „ionokalorische Kältekreislauf“ (siehe Abbildung) beschreibt die Abkühlung und Erwärmung eines Stoffgemisches durch die Veränderung der Ionenkonzentration mit einem einhergehenden Phasenwechsel. Er könnte als thermodynamischer Kreisprozess beispielsweise in Kälteanlagen zur moderaten Kühlung genutzt werden. Die Grundlage bildet die Schmelzpunkterniedrigung eines organischen Stoffes durch die Zugabe eines Salzes. In einem Kreisprozess würden die beiden Stoffe zunächst gemischt, um Wärme aufzunehmen und anschließend wieder in die Einzelverbindung getrennt, um Wärme bei der Phasenumwandlung (Rekristallisation) abzugeben. Im Vergleich zu herkömmlichen Kältesystemen wie Kompressionskältemaschinen weist die ionokalorische Kühlung das Potenzial auf, effizienter und umweltfreundlicher zu sein. Dies ist darauf zurückzuführen, dass sie keine ozonschädigenden oder klimaschädlichen Kältemittel verwendet und mechanische Komponenten wie Verdichter nicht benötigt.

Das am ILK Dresden initiierte Vorlaufforschungsprojekt zielt darauf ab, Stoffpaare nach kältetechnischen Kriterien zu identifizieren und zu qualifizieren, die für den ionokalorischen Kreislaufprozess geeignet sind und in bestehenden sowie neuen Kühlanwendungen zum Einsatz kommen könnten. Im Rahmen der Laborversuche werden die Mischungstemperaturen an potenziell geeigneten Stoffgemischen gemessen sowie die eutektischen Zusammensetzungen mittels dynamischer Differenzkalorimetrie (Differential Scanning Calorimetry – DSC) ermittelt. Ein weiterer Schwerpunkt liegt in der Trennung der aufgeschmolzenen Stoffgemische in ihre Komponenten. Dazu werden geeignete Trennverfahren ausgewählt und auf ihre Effizienz getestet. Im Rahmen einer möglichen technischen Nutzung ist es erforderlich, die Werkstoffe auf ihr korrosives Verhalten gegenüber den ausgewählten Stoffen zu untersuchen. Die ionokalorische Kühlung im Kreislaufprozess stellt eine besondere Herausforderung für den technischen Betrieb dar, da eine Antwort auf die Frage gefunden werden muss, wie die Stoffe am besten im flüssigen und festen Aggregatzustand transportiert werden und wie sie am effizientesten gemischt und getrennt werden können.


[1] Drew Lilley and Ravi Prasher: Supplementary Materials for Ionocaloric refrigeration cycle, Science 378, 1344 (2022)


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Leistungsmessung an Wärmeübertragern

Wärmeübertrager korrekt dimensioniert?

Image

MetPCM

Metallverkapselte Hochtemper PCM

Image

Untersuchungen an Deckenkühlgeräten

Leistungsmessungen im Vergleich

Image

Akustik und Schwingungen

Messung - Beratung - Optimierung