Aktuelle Forschungsprojekte

Image Performance tests of refrigerant compressors
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image State of system and failure analyses
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Low noise and non metallic liquid-helium cryostat
Image Software for test rigs
Image Tribological investigations of oil-refrigerant-material-systems
Image High Capacity Pulse Tube Cooler
Image Ice Slurry Generation
Image Intelligent innovative power supply for superconducting coils
Image Cold meter
Image Certifiable connection types in cryogenics
Image Micro heat exchangers in refrigeration
Image Innovative small helium liquefier
Image Verification of storage suitability of cryo tubes
Image Corrosion inhibitor for ammonia absorption systems

You are here:   /  Home


Innovative small helium liquefier

EuroNorm GmbH (BMWi)

Dr. Erik Neuber

+49-351-4081-5122

Liquefaction rates from 10 to 15 l/h

The goal of the R & D project is to explore new innovative ways to develop the functional model of a "helium liquefier for the small liquefaction rate". The development of such a system should cover the still non-existent area of the market.

 

This liquefier should contain several innovations and technical solutions:

  • Development of a helium liquefaction system with a liquefaction rate of 10 - 15 liters per hour of liquid helium.
  • Development of an innovative pre-cooling stage, which works with a mixture of helium and refrigerants as working fluid.
  • Detailed investigation of an innovative helium cycle within the development of the helium small liquefier with the ability to operate in different operating regimes: helium liquefaction, cooling and temperature stabilization/control.
  • Operation of the condenser with a liquefaction rate that can be varied over a wide range - between 75% and 100%.

Currently, the functional design of the helium small liquefier is being set up. The figure shows a 3D model of the cold box, in which all heat exchangers and cold valves are mounted. In the upper part of the cold box, two prototypes of low flow helium turboexpanders are mounted. All external components, piping and condenser control system are located on the front of the cold box.


Your Request

Further Projects

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures