Current research projects

Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Optimizing HVAC operation with machine learning
Image Micro heat exchangers in refrigeration
Image Investigation according to DIN EN ISO 14903
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image 3D - Air flow sensor
Image Tribological investigations of oil-refrigerant-material-systems
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Cold meter
Image Preformance measurements of heat exchangers
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Measurements on ceiling mounted cooling systems
Image Multifunctional electronic modules for cryogenic applications
Image Filter Tests
Image Panel with indirect evaporative cooling via membrane

You are here:   /  Home


Intelligent innovative power supply for superconducting coils

Dr. Andreas Kade

+49-351-4081-5117

Compact, powerful power supply with 4-quadrant converter

The aim of the R&D project is the development of an intelligent innovative power supply as a 4-quadrant controller and energy storage device, which consists of a communicating system between quench protection and current flow control at the superconductor. The development shall be characterized by safety, compactness, accuracy, user friendliness, good price-performance ratio and modularity. The combination of cryogenic and warm electronics will provide significant advantages.
The functional model developed and constructed for this purpose has the following parameters and properties:

  • 4-quadrant power supply with ± 25 V and ± 14 kA
  • Constant voltage quench protection system
  • Cryogenic switch (cryogenic)
  • Energy storage system

The components for the energy storage system consists of individual cells with a capacity of 3000 F and a voltage of 2.7 V. 51 modules are connected in parallel, each with 10 individual cells, to form a capacitor bank. This results in a capacity of 15,300 F and a voltage of 25 V. A 3 kA, 30 V device serves as power supply, which has already been successfully tested on a cryogenic power supply.
In the next step, the configured capacitor modules for the energy storage and the boards of the 4-quadrant controller, see Figure 1, were combined in three switch cabinets, see Figure 2. The completed switch cabinet is shown in Figure 3. First results were presented at the 16th Cryogenics in October 2021.
 


Your Request

Further Projects

Image

Software modules

Software for properties of refrigerants

Image

Verification of storage suitability of cryo tubes

Artificial aging of primary packaging for biobanking applications

Image

Preformance measurements of heat exchangers

Is the heat exchanger properly sized?

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS