Aktuelle Forschungsprojekte

Image IO-Scan - Integral measuring optical scanning method
Image Tribological investigations of oil-refrigerant-material-systems
Image 3D - Air flow sensor
Image Air-flow test rig for fan characteristic measurement
Image Verification of storage suitability of cryo tubes
Image Measurement of insulated packaging
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Heat2Power
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Combined building and system simulation
Image Influenced melting point of water by magnetic field
Image Calibration leak for the water bath leak test
Image Solar Cooling
Image Innovative Parahydrogen Generator Based on Magnets
Image Reduction of primary noise sources of fans
Image High temperature heat pump

You are here:   /  Home


Intelligent innovative power supply for superconducting coils

Dr. Andreas Kade

+49-351-4081-5117

Compact, powerful power supply with 4-quadrant converter

The aim of the R&D project is the development of an intelligent innovative power supply as a 4-quadrant controller and energy storage device, which consists of a communicating system between quench protection and current flow control at the superconductor. The development shall be characterized by safety, compactness, accuracy, user friendliness, good price-performance ratio and modularity. The combination of cryogenic and warm electronics will provide significant advantages.
The functional model developed and constructed for this purpose has the following parameters and properties:

  • 4-quadrant power supply with ± 25 V and ± 14 kA
  • Constant voltage quench protection system
  • Cryogenic switch (cryogenic)
  • Energy storage system

The components for the energy storage system consists of individual cells with a capacity of 3000 F and a voltage of 2.7 V. 51 modules are connected in parallel, each with 10 individual cells, to form a capacitor bank. This results in a capacity of 15,300 F and a voltage of 25 V. A 3 kA, 30 V device serves as power supply, which has already been successfully tested on a cryogenic power supply.
In the next step, the configured capacitor modules for the energy storage and the boards of the 4-quadrant controller, see Figure 1, were combined in three switch cabinets, see Figure 2. The completed switch cabinet is shown in Figure 3. First results were presented at the 16th Cryogenics in October 2021.
 


Your Request

Further Projects

Image

Cold meter

The fast way to refrigerating capacity

Image

Optimizing HVAC operation with machine learning

Intelligent control of HVAC systems – high comfort with low energy demand

Image

Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)

Linking the entire life cycle of a multi-functional air handling unit

Image

Software modules

Software for properties of refrigerants

Image

Verification of storage suitability of cryo tubes

Artificial aging of primary packaging for biobanking applications