Aktuelle Forschungsprojekte

Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen
Image Filterprüfungen
Image Sole (Wasser)-Wärmepumpen
Image Primäre Lärmreduktion an Ventilatoren
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Mikrofluidisches Expansionsventil
Image KLAR
Image Prüfbad-Haube
Image ZeroHeatPump
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Beladungssensor für Adsorptionsfilter
Image Luft-Wasser Wärmepumpen
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Elektrische Komponenten in Kältekreisläufen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Controlled Rate Freezing-Gerät für Multiwellplatten (CRF-Multi)

Preisgünstige Kryokonservierung biologischer Proben

Image

Dynamische Gebäude- und Anlagensimulation mit TRNSYS

Wissenschaftliche Analyse thermodynamischer Prozesse in Gebäuden und Anlagen

Image

Elektronische Multifunktionsmodule für kryogene Anwendungen

Elektronik mit geringem Verkabelungsaufwand - mehr als 100 Sensoren über eine Durchführung