Aktuelle Forschungsprojekte

Image Vakuum-Flüssigeis-Technologie
Image Elektrische Komponenten in Kältekreisläufen
Image Hochtemperatur Wärmepumpe
Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Strömungssimulation CFD
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image Leistungsmessung an Wärmeübertragern
Image Modulares Speichersystem für solare Kühlung
Image Untersuchungen von Werkstoffen
Image Cl.Ai.Co - Clever Air Components
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Apparatur und Verfahren zur Degradationsprüfung

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Phasenauflösende numerische Simulation von Suspensionen

Prof. Dr.-Ing. Tobias Kempe

+49-351-4081-5317

SUSPENSE

Phasenauflösende numerische Simulation von Suspensionen

Problemstellung

Die Zugabe von Partikeln zu Flüssigkeiten verändert deren physikalische Eigenschaften, wie z.B. die effektive Dichte, Viskosität und Wärmeleitfähigkeit.

Basisfluide wie Wasser oder Öle besitzen in der Regel newtonsche Eigenschaften, d.h. die Scherspannung ist proportional zur Scherrate, während Suspensionen ein wesentlich komplexeres rheologisches Verhalten zeigen.

Derzeit werden die effektive Viskosität und Wärmeleit-fähigkeit von Suspension vorzugsweise messtechnisch bestimmt. Numerische Simulationen sind diesbezüglich mit größeren Unsicherheiten behaftet.

Das Ziel des Projektes ist es, mit Hilfe neuartiger numerischer Methoden die effektiven Stoffwerte exakt zu bestimmen. Hiermit eröffnetet sich ein weites Anwendungsspektrum hinsichtlich der Analyse und Optimierung von Suspensionen.

Lösungsansatz

Mit Hilfe von speziellen numerischen Verfahren wird die Partikelgeometrie im bewegten Fluid räumlich aufgelöst. Ein etabliertes Verfahren zur Berechnung vieler beweglicher Partikel in einem strömenden Fluid ist die Immersed-Boundary-Methode.

Arbeitsinhalte

  • Implementierung einer Immersed-Boundary-Methode für bewegliche Partikel
  • Validierungsrechnungen für feststehende Einzelpartikel in laminarer Strömung
  • Realisierung scherperiodischer Randbedingungen
  • Simulationen zur effektiven Viskosität und Wärmeleitfähigkeit von Suspensionen
  • Untersuchung mono- und polydisperser Gemische
  • Erstellung von Regime-Karten auf Basis der Simulationsdaten

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

ZeroHeatPump

Leistungsführung von Klein-Wärmepumpen ohne Energieverbrauch

Image

KLAR

Klassenraumlüftung akustikbasiert regeln