Aktuelle Forschungsprojekte

Image Wärmekraftmaschinen
Image Software für die TGA-Planung
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image CFE-Test Dunstabzugshauben
Image Seminar Lecksuche / Dichtheitsprüfung in der Kältetechnik
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Modulares Speichersystem für solare Kühlung
Image PerCO
Image Cl.Ai.Co - Clever Air Components
Image Prüfverfahren für Hochtemperaturewärmepumpen-Öle
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers

Sie befinden sich hier:   /  Startseite


Ionokalorische Kälteerzeugung

03/2024 - 08/2026

Dr. Joachim Germanus

+49-351-4081-5412

in Bearbeitung

Ionokalorisches Fest-Flüssigphasen-Kühlverfahren

Die Nutzung kalorischer Effekte für kältetechnische Anwendungen wird bereits seit mehreren Jahren untersucht und diskutiert. Kalorische Effekte in Festkörpern resultieren aus komplexen Wechselwirkungen zwischen ihren atomaren bzw. molekularen Strukturen, die durch mechanischen Druck, Magnetfelder oder elektrische Felder beeinflusst werden. Die zukünftige Nutzung dieser kalorischen Effekte könnte die Entwicklung von Kälteanlagen vorantreiben, die sich durch eine höhere Energieeffizienz und Umweltfreundlichkeit als herkömmliche Kühltechnologien auszeichnen. Im Jahr 2022 schlugen Lilley und Prasher[1] eine Möglichkeit der Kälteerzeugung vor, die auf einem weiteren kalorischen Effekt beruht. Der von ihnen so bezeichnete „ionokalorische Kältekreislauf“ (siehe Abbildung) beschreibt die Abkühlung und Erwärmung eines Stoffgemisches durch die Veränderung der Ionenkonzentration mit einem einhergehenden Phasenwechsel. Er könnte als thermodynamischer Kreisprozess beispielsweise in Kälteanlagen zur moderaten Kühlung genutzt werden. Die Grundlage bildet die Schmelzpunkterniedrigung eines organischen Stoffes durch die Zugabe eines Salzes. In einem Kreisprozess würden die beiden Stoffe zunächst gemischt, um Wärme aufzunehmen und anschließend wieder in die Einzelverbindung getrennt, um Wärme bei der Phasenumwandlung (Rekristallisation) abzugeben. Im Vergleich zu herkömmlichen Kältesystemen wie Kompressionskältemaschinen weist die ionokalorische Kühlung das Potenzial auf, effizienter und umweltfreundlicher zu sein. Dies ist darauf zurückzuführen, dass sie keine ozonschädigenden oder klimaschädlichen Kältemittel verwendet und mechanische Komponenten wie Verdichter nicht benötigt.

Das am ILK Dresden initiierte Vorlaufforschungsprojekt zielt darauf ab, Stoffpaare nach kältetechnischen Kriterien zu identifizieren und zu qualifizieren, die für den ionokalorischen Kreislaufprozess geeignet sind und in bestehenden sowie neuen Kühlanwendungen zum Einsatz kommen könnten. Im Rahmen der Laborversuche werden die Mischungstemperaturen an potenziell geeigneten Stoffgemischen gemessen sowie die eutektischen Zusammensetzungen mittels dynamischer Differenzkalorimetrie (Differential Scanning Calorimetry – DSC) ermittelt. Ein weiterer Schwerpunkt liegt in der Trennung der aufgeschmolzenen Stoffgemische in ihre Komponenten. Dazu werden geeignete Trennverfahren ausgewählt und auf ihre Effizienz getestet. Im Rahmen einer möglichen technischen Nutzung ist es erforderlich, die Werkstoffe auf ihr korrosives Verhalten gegenüber den ausgewählten Stoffen zu untersuchen. Die ionokalorische Kühlung im Kreislaufprozess stellt eine besondere Herausforderung für den technischen Betrieb dar, da eine Antwort auf die Frage gefunden werden muss, wie die Stoffe am besten im flüssigen und festen Aggregatzustand transportiert werden und wie sie am effizientesten gemischt und getrennt werden können.


[1] Drew Lilley and Ravi Prasher: Supplementary Materials for Ionocaloric refrigeration cycle, Science 378, 1344 (2022)


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Kälte-Erzeugung und Kältespeicherung

mit Nutzung der Lösungsenthalpie von Salz

Image

CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung

Entwicklung eines Sublimations-Wärmeübertragers

Image

Mikrowärmeübertrager in der Kältetechnik

3D-Fertigung von Mikrowärmeübertragern

Image

Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen

Hygienische Optimierung und Langzeitstabilisierung membranbasierter Wärme- und Stoffübertrager

Image

Intelligente innovative Stromversorgung für supraleitende Spulen

Kompakte leistungsfähige Stromversorgung mit 4-Quadrantensteller