Aktuelle Forschungsprojekte

Image Massenspektrometer
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Kalibrierung von Tieftemperatursensoren
Image Wetterschutzhaube mit integrierter nachhaltiger Kühlfunktion | NaKu-WSH
Image Solare Kühlung
Image Zug- und Druckprüfung
Image Cl.Ai.Co - Clever Air Components
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Charakterisierung von Supraleitern in Wasserstoffatmosphäre
Image Kälte-Erzeugung und Kältespeicherung
Image Mollier hx-Diagramm
Image Untersuchungen von Werkstoffen
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern
Image Kryostate aus GFK oder Metall

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Füllmengenreduzierung

Wie viel Kältemittel muss gefüllt werden?

Image

Leistungsprüfung an Verflüssigungssätzen

Wie effizient ist der Verflüssigungssatz ?

Image

Elektrische Auskopplung aus einer Expansionsturbine

Kostengünstige Umwandlung kleiner elektrischer Leistungen

Image

Zustands- und Schadensanalysen

Ist der Zustand des Kältemittelverdichters ok?

Image

Thermostatische Expansionsventile

Arbeitet das TEV eigentlich richtig?