Aktuelle Forschungsprojekte

Image Kryostate aus GFK oder Metall
Image Messung Isolierverpackung
Image Wärmekraftmaschinen
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Tieftemperatur-Messdienstleistungen
Image Thermostatische Expansionsventile
Image Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan
Image Kältemengenzähler
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Heat2Power
Image Matrix-Design for Artificial Meat (MADAM)
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Strömungssimulation CFD

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Prüfverfahren für Außenluftfilter

Bewertung von biologisch aktiven Außenluftfiltern

Image

Strömungssimulation CFD

Wissenschaftliche Untersuchung von Strömungen

Image

Textiler Wärme- und Stoffübertrager in KVS-Systemen

Enthalpierückgewinnung zwischen örtlich getrennten Luftströmen

Image

Controlled Rate Freezing-Gerät für Multiwellplatten (CRF-Multi)

Preisgünstige Kryokonservierung biologischer Proben

Image

Dynamische Gebäude- und Anlagensimulation mit TRNSYS

Wissenschaftliche Analyse thermodynamischer Prozesse in Gebäuden und Anlagen