Aktuelle Forschungsprojekte

Image Rohrgekapselte Latentwärmespeicher
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image CFE-Test Dunstabzugshauben
Image Beladungssensor für Adsorptionsfilter
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image MetPCM
Image Prüfverfahren und Prüfvorrichtungen für ABEK Filterelemente
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Prüfverfahren für Außenluftfilter
Image Pulse-Tube Kryokühler
Image Zertifizierbare Verbindungsarten in der Kryotechnik

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Kältemengenzähler

Der schnelle Weg zur Kälteleistung

Image

Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Image

Prolatent

Innovative Prozesswärmespeicher mit org. PCMs

Image

Primäre Lärmreduktion an Ventilatoren

...mit numerischen und experimentellen Methoden an einem gegenläufigen Axialventilator

Image

Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)

Vernetzung des gesamten Lebenszyklus einer multifunktionalen RLT-Komponente