Aktuelle Forschungsprojekte

Image Befeuchtungsanlage für hochreine Gase
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Prüfverfahren für Hochtemperaturewärmepumpen-Öle
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa
Image Selbstoptimierendes Raumluftmanagementsystem
Image Zug- und Druckprüfung
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Hochtemperatur Wärmepumpe
Image Pulse-Tube Kryokühler

Sie befinden sich hier:   /  Startseite


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Kälte-Erzeugung und Kältespeicherung

mit Nutzung der Lösungsenthalpie von Salz

Image

CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung

Entwicklung eines Sublimations-Wärmeübertragers

Image

Mikrowärmeübertrager in der Kältetechnik

3D-Fertigung von Mikrowärmeübertragern

Image

Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen

Hygienische Optimierung und Langzeitstabilisierung membranbasierter Wärme- und Stoffübertrager

Image

Intelligente innovative Stromversorgung für supraleitende Spulen

Kompakte leistungsfähige Stromversorgung mit 4-Quadrantensteller