Aktuelle Forschungsprojekte

Image Software for technical building equipment
Image Optimizing HVAC operation with machine learning
Image Tribological investigations of oil-refrigerant-material-systems
Image High temperature heat pump
Image Computational fluid dynamics CFD
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Testing of mobile leak detectors according to DIN EN 14624
Image Verification of storage suitability of cryo tubes
Image Multifunctional electronic modules for cryogenic applications
Image Development of a Cryogenic Magnetic Air Separation Unit
Image IO-Scan - Integral measuring optical scanning method
Image Innovative Parahydrogen Generator Based on Magnets
Image Software for test rigs
Image Calibration of Low Temperature Sensors
Image Lifetime prediction of hermetic compressor systems
Image Refrigerants, lubricants and mixtures

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Certifiable connection types in cryogenics

Detachable and permanent connections, adhesive bond / form closure / force closure

Image

Combined building and system simulation

Scientific analysis of thermodynamic processes in buildings and its systems

Image

Heat2Power

Refining of fuel cell waste heat

Image

Reducing the filling quantity

How much refrigerant must be filled?