Current research projects

Image Tribological investigations of oil-refrigerant-material-systems
Image Test procedures for electrical components
Image Practical training, diploma, master, bachelor
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Brine (water)-water heat pump
Image Certifiable connection types in cryogenics
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Solar Cooling
Image Mass Spectrometer
Image Air-flow test rig for fan characteristic measurement
Image Electrical components in refrigeration circuits
Image Laseroptical measurement
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Computational fluid dynamics CFD

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Humidifier System for High-Purity Gases

Nafion - moisture transfer

Image

Behavior of multiphase cryogenic fluids

experimental und numerical investigations