Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Hydrogen and methane testing field at the ILK
Image Testzentrum PLWP at ILK Dresden
Image Leak Detection and Tightness Test
Image Software for technical building equipment
Image Filter Tests
Image Laseroptical measurement
Image Innovative small helium liquefier
Image Ice Slurry Generation
Image Intelligent innovative power supply for superconducting coils
Image Thermostatic Expansion Valves
Image Measurement of insulated packaging
Image Software modules
Image Air-water heat pumps
Image Practical training, diploma, master, bachelor

You are here:   /  Home


Development of test methods and test rigs for stationary integrated refrigeration units

BMWi Euronorm Innokom

02/2017 – 07/2019

Andreas Peusch

+49-351-4081-639

How efficient is my refrigeration unit?

The objective of the R&D project was the development of a test method for stationary integrated refrigeration units. The test method comprises different device variants, like ceiling mounted, wall mounted or split refrigeration units. The method provides reliable performance data and thus enables a manufacturer-independent efficiency comparison.

Measurements in the 3- or 4-chamber measuring set-up were carried out using the calorimeter method with compensation of the ambient conditions. This enabled the measurements of devices with low cooling capacity (0.5 - 4 kW).

In the selected test set-up (Figure 1), the cooling capacity is measured indirectly via the electrical power of the compensation heating. To determine the total cooling capacity, the heat input into the calorimeter room and, if necessary, internal loads (sensible and latent heat) must be added together.

The test method comprises following features:

  • suitable for low temperature devices (-20°C) and normal temperature cooling
  • measurement in calorimeter room (3- or 4-chamber concept)
  • determination of heat input via enclosing surfaces before power measurement
  • establishiment of equilibrium states of the temperatures to be set (takes up to 24h)
  • measurement period up to 6h at a tolerance band of 0,2K

Conclusion:

  • results are implemented into the new test norm prEN 17432
  • establishment of an uniform Europe-wide comparison criterion
  • performance and efficiency data on a uniform basis leads to higher confidence and thus also to lower consumption costs

Your Request

Further Projects

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination

Image

Electrical components in refrigeration circuits

High voltage tests under real conditions

Image

Influenced melting point of water by magnetic field

Controlled sub-cooling of products in freezing processes


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG