Aktuelle Forschungsprojekte

Image Reducing the filling quantity
Image High Capacity Pulse Tube Cooler
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Combined building and system simulation
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Computational fluid dynamics CFD
Image Verification of storage suitability of cryo tubes
Image Performance tests of condensing units
Image Innovative Parahydrogen Generator Based on Magnets
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Laseroptical measurement
Image Lifetime prediction of hermetic compressor systems
Image Humidifier System for High-Purity Gases
Image State of system and failure analyses
Image Development of a Cryogenic Magnetic Air Separation Unit

You are here:  Home /  Measurements and Tests


Development of test methods and test rigs for stationary integrated refrigeration units

BMWi Euronorm Innokom

02/2017 – 07/2019

Andreas Peusch

+49-351-4081-5221

How efficient is my refrigeration unit?

The objective of the R&D project was the development of a test method for stationary integrated refrigeration units. The test method comprises different device variants, like ceiling mounted, wall mounted or split refrigeration units. The method provides reliable performance data and thus enables a manufacturer-independent efficiency comparison.

Measurements in the 3- or 4-chamber measurement setup were carried out using the calorimeter method with compensation of the ambient conditions. This enabled the measurements of devices with low cooling capacity (0.5 - 4 kW).

In the selected test setup (Figure 1), the cooling capacity is measured indirectly via an electrical power of the compensation heating. To determine the total cooling capacity, the heat input into the calorimeter room and, if necessary, internal loads (sensible and latent heat) have to be added together.

The test method comprises following features:

  • Suitable for low temperature devices (-20 °C) and normal temperature cooling (0 °C)
  • Measurement in the calorimeter room (3- or 4-zone concept)
  • Determination of heat input via enclosure surfaces before power measurement
  • Establishment of equilibrium conditions (settling phase) of the temperatures to be set (up to 24 h)
  • Measuring period up to 6 h with permissible tolerance band of 0.2 K

Conclusion:

  • Results were included in new test standard prEN 17432
  • Establishment of a uniform Europe-wide comparison criterion
  • Performance and efficiency data on a uniform basis leads to higher confidence and thus also to lower consumption costs

Your Request

Further Projects - Measurements and Tests

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures

Image

Investigation according to DIN EN ISO 14903

These tests according to DIN EN ISO 14903 are possible at ILK Dresden