Current research projects

Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Air-flow test rig for fan characteristic measurement
Image High temperature heat pump
Image High Capacity Pulse Tube Cooler
Image Investigation according to DIN EN ISO 14903
Image Computational fluid dynamics CFD
Image IO-Scan - Integral measuring optical scanning method
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Influenced melting point of water by magnetic field
Image Modular storage system for solar cooling
Image Laseroptical measurement
Image Behavior of multiphase cryogenic fluids
Image Low temperature – test facilities
Image Panel with indirect evaporative cooling via membrane
Image Low Temperature Tribology

You are here:  Home /  Research and Development


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects - Research and Development

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures