Aktuelle Forschungsprojekte

Image Low Temperature Measuring Service
Image Performance tests of refrigerant compressors
Image State of system and failure analyses
Image Range of services laboratory analyses
Image Investigation according to DIN EN ISO 14903
Image High Capacity Pulse Tube Cooler
Image Software modules
Image Hydrogen and methane testing field at the ILK
Image Test rigs for refrigeration and heat pump technology
Image Calibration leak for the water bath leak test
Image Investigation of coolants
Image Helium extraction from natural gas
Image Innovative Parahydrogen Generator Based on Magnets
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Modular storage system for solar cooling
Image Measurement of insulated packaging

You are here:  Home /  Research and Development


Behavior of multiphase cryogenic fluids

Matthias Schneider

+49-351-4081-5126

experimental und numerical investigations

With the help of this basic research project, processes that occur during the sudden evaporation of cryogenic media should be better understood, described and evaluated. This should create possibilities for improved design and efficient operation of safety elements and power transmitting components in plants with cryogenic media.
A well-founded theoretical understanding of the dynamic calculation and evaluation of boiling cryogenic media will be developed. In order to obtain, for example, a concrete component behaviour under cryogenic conditions, numerical descriptions are required beyond the design calculations, both for fluid dynamics and for the spatial and temporal change in temperature.
Parallel to this, the experimental basis for the design of complex cryogenic components and systems engineering is being improved.
The objectives and results of the preliminary research project include

  • Calculated parameters from various numerical simulations for essential cryogenic components
  • Extensive experimental results for variations of the underlying geometry, advantageous process control, improved design of components
  • Basic thermodynamic processes in gas chillers
  • Calculation algorithms for the description of dynamic heat transport phenomena
  • Evaluation of critical plant conditions
  • Suitable materials for cryostat components and cryogenic plants
  • Novel components e.g. for small helium mass flows

An application project for the development of heat exchangers for cryogenic multiphase fluids is planned.

Video of the mass transfer rate between the liquid and the vapour phase inside a Venturi tube

If you can not see the video, please use the external link to YouTube.


Your Request

Further Projects - Research and Development