Current research projects

Image Verification of storage suitability of cryo tubes
Image Test method for high - temperature heat pump - oils
Image Micro fluidic expansion valve
Image Preformance measurements of heat exchangers
Image Tensile and compression testing
Image Investigation according to DIN EN ISO 14903
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Calibration leak for the water bath leak test
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Cryostats, Non-Metallic and Metallic
Image Low temperature – test facilities
Image Air-water heat pumps
Image Measurements on ceiling mounted cooling systems
Image Filter Tests
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Computational fluid dynamics CFD

You are here:  Home /  Research and Development


Corrosion inhibitor for ammonia absorption systems

EURONORM GmbH

07/2021-08/2023

Dr. rer. nat. Franziska Krahl

+49-351-4081-5421

An alternative to chromium(VI) compounds

Project management: Dr. Franziska Krahl, Dr. Steffen Feja

Unlike electrically driven compression chillers or compression heat pumps, ammonia absorption systems (chillers and heat pumps) are driven by thermal energy. If the thermal energy comes from solar thermal energy, geothermal energy or waste heat, for example, these machines can be operated without fossil fuels. The working substances water and ammonia used are naturally occurring compounds, do not contribute to global warming (GWP = 0) and also have no ozone depletion potential (ODP).

The research project focused on identifying a suitable corrosion inhibitor for ammonia absorption systems to replace chromium(VI) compounds. A strategy was developed to enable the investigation of a large number of potential alternatives. From a total of more than 200 substance combinations (test approaches), 12 promising alternatives for further laboratory tests were identified using a rapid test developed in the project.

The rapid test developed proved to be very efficient in terms of identifying potential corrosion inhibitors. By using sealed reaction chambers, this test can also be carried out at significantly higher temperatures, which means that conditions close to the application are already present during screening.

At the end of the research project, 3 chromium(VI)-free corrosion inhibitors for ammonia absorption systems will be available, the basic suitability of which has been proven in laboratory tests. Their effectiveness is now to be tested in demonstrators.


Your Request

Further Projects - Research and Development

Image

State of system and failure analyses

Cause of the failure unknown?

Image

Thermostatic Expansion Valves

Does the TXV function correctly?

Image

Testzentrum PLWP at ILK Dresden

Test Fluid-Energy Machines and Components

Image

Performance tests of refrigerant compressors

Does your compressor perform well?

Image

Swirl-free on the move...

...with a contra-rotating fan