Current research projects

Image Test method for high - temperature heat pump - oils
Image Test procedures for electrical components
Image Modular storage system for solar cooling
Image High Capacity Pulse Tube Cooler
Image Micro fluidic expansion valve
Image Low noise and non metallic liquid-helium cryostat
Image ZeroHeatPump
Image Laseroptical measurement
Image Energy efficiency consulting - cogeneration systems
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Hydrogen and methane testing field at the ILK
Image Thermal engines
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Mass Spectrometer

You are here:  Home /  Research and Development


Low noise and non metallic liquid-helium cryostat

Industry and Research Institutes

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Low-noise Magnetic Field Cryostat for SQUID-Applications

Technical Data for the Cryostats

parametervalue
volume of liquid helium5 to 12 litre (other volume possible)
time to complete evaporation of helium3 to 7 days (depends on size)
heat load0.1 W (in standby operation)
rate of helium evaporation≤ 3 litre / day
holding time of the liquid heliumup to 4 days without refilling
initial noise of the cryostat< 3 fT / Hz½
helium leak test (He-vessel)< 1 × 10-11 mbar l / s

ILK Dresden developed low noise magnetic field and non metallic helium cryostats made of GRP (glass reinforced plastics) with a high helium and vacuum holding time.

The cryostats can operate in a direction independent operation mode (tiltable arrangement) and hence they are suitable for a plurality of several applications.

The ILK concept offers much lower permeation rates inside the He-reservoir as comparable models from other manufacturers and is therefore perfect for SQUID (superconducting quantum interference device) applications and other long-term measurements.
 
The technical design of the cryostats is thus predestined for future sensor generation.

Specification

  • suitable for the cooling of SQUID-Sensors
  • non-metallic (GRP)
  • fast filling with LHe via thermosiphon
  • GRP exhaust gas cooled radiation shield for high efficiency.
  • small cold-warm distance feasible
  • low maintenance 
  • other design variants possible on costumer request

Low noise magnetic field

The low-noise magnetic field of the cryostat was tested in the magnetically shielded room BMSR-1 of PTB Berlin and is smaller than the lowest resolution limit of the measurement system used, see figure below.


Your Request

Further Projects - Research and Development

Image

Behavior of multiphase cryogenic fluids

experimental und numerical investigations

Image

Innovative Parahydrogen Generator Based on Magnets

Magnetic Gas Separation of the Hydrogen Isomers

Image

Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

high performance efficiency, environmental friendliness, compactness, cost-effectiveness

Image

Intelligent innovative power supply for superconducting coils

Compact, powerful power supply with 4-quadrant converter

Image

Laseroptical measurement

PIV and LDA / PDA