Aktuelle Forschungsprojekte

Image Certifiable connection types in cryogenics
Image Pulse-Tube-Refrigerator with sealed compressor
Image Cool Up
Image All-in-one device for freeze-drying and production of biomaterial
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Thermostatic Expansion Valves
Image High temperature heat pump
Image Low noise and non metallic liquid-helium cryostat
Image Hydrogen and methane testing field at the ILK
Image Practical training, diploma, master, bachelor
Image Filter Tests
Image Ionocaloric cooling
Image Air-water heat pumps
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Testzentrum PLWP at ILK Dresden
Image Cryostats, Non-Metallic and Metallic

You are here:  Home /  Research and Development


Pulse-Tube-Refrigerator with sealed compressor

Federal Ministry of Economics and Energy

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

for mobil use in the hydrogen technology

Within the research project "Mobile single-stage pulse tube cooler with hermetic compressor drive" (project number MF 130012), a compact, robust and low-maintenance cryocooler was developed.
Possible applications for this cryocooler, e.g.,

  • Cooling of mobile high-pressure tanks for storing fuels in cryogenic liquid or supercritical state (e. g. H2 – cryogenic under high pressure)
  • mobile cooling applications < –40°C in medical technology, transport of organic material or samples

The system has a simple and cost-effective design with the following advantages:

  • Mobile use, supply voltage 12 V or 24 V, air-cooled
  • Supply of cryogenic temperatures in the range 60...120 K
  • Low maintenance and long-life, no moving parts in the cold part
  • Programmable temperature curves via microcontroller-based control
  • Low power consumption, in the range of 500 W
  • Low space requirement, arrangement can be adapted
  • Lower costs control through extensive use of commercial components

Figure 1 shows the experimental setup of the cryocooler in a specially adapted orifice double inlet configuration. With the use of a special valve control, 2 W cooling capacity at 77 K and 5 W at 90 K could be achieved. The lowest temperature reached with this single-stage configuration was 68 K. The temperature stability of the system was validated in a test lasting 100 h, see figure 2. In further investigations with a specially adapted compressor, even lower temperatures are to be achieved, down to 40 K.

We are looking for industrial partners for adaptations for special application purposes or possible further developments. Conceivable are, for example, a compact system suitable for use in motor vehicles in a functional housing with the necessary interfaces or a further development of the current cooler to achieve higher cooling capacity, lower temperatures and higher efficiency.


Your Request

Further Projects - Research and Development

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures