Current research projects

Image Thermostatic Expansion Valves
Image Innovative small helium liquefier
Image Investigation of coolants
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Brine (water)-water heat pump
Image Breakthrough Sensor for Adsorption Filters (BelA)
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Optimizing HVAC operation with machine learning
Image Intelligent innovative power supply for superconducting coils
Image Ice Slurry Generation
Image Measurement of insulated packaging
Image Preformance measurements of heat exchangers
Image Certifiable connection types in cryogenics
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Calibration of Low Temperature Sensors

You are here:  Home /  Testing Equipment


Innovative Manufacturing Technologies for Cryosorption Systems

Euronorm, R&D

Sandra Tippmann

+49-351-4081-5131

Vacuum Pumps for UHV and XHV

A cryosorption system is defined as a vacuum pump that captures gas on cryogenic surfaces (gas-binding vacuum pump). Thus pressures lower than 5-12 mbar are obtainable (realisation of UHV - ultrahigh vacuum and XHV - extremely high vacuum). Cryosorption systems rely on very good heat transfer performance. This is currently being achieved with a complex, cost-intensive and risky manufacturing process. Therefore the aim of this project is to develop a new manufacturing technology that does not have this disadvantage.

 

For this purpose, thermodynamically important variables, such as sorption heat and heat transfer resistance were determined mathematically. A test sample was developed and constructed based on these results.

After completion of the design the test sample will be produced.

In the further course of the R&D project a test stand will be set up on which the test sample can be measured. These measurements will be checked and validated in a CFD simulation. With the help of the CFD model, various simulations for future cryosorption systems can be carried out. For example cooling times for different activated carbon masses or the thermal performance under different conditions for the cooling medium can be determined using this method.

Finally the sample production (functional sample) of a cryosorption system made of stainless steel with a precisely defined heat transfer behaviour takes place. The functional model is measured in relation to the cooling performance and pressure loss of the cooling medium and the results obtained will be included into the creation of a process instruction for manufacturing future cryosorption systems.


Your Request

Further Projects - Testing Equipment

Image

Breakthrough Sensor for Adsorption Filters (BelA)

Sensor system for detecting an imminent breakthrough in gas filtration

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures

Image

All-in-one device for freeze-drying and production of biomaterial

with automated freezing and sterilisation option

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds