Image Kryostate aus GFK oder Metall
Image Solar-Elektrische Klimatisierung
Image Innovativer Helium-Kleinverflüssiger
Image Reduzierung der Expansionsverluste von Kälteanlagen
Image Thermische Speicherung mit PCM
Image Lachgas (N2O) als Kältemittelersatz für R-23
Image Kältemengenzähler
Image Mikrowärmeübertrager in der Kältetechnik
Image Filterprüfungen
Image Regenerationsmodul für dezentrale Trocknung
Image Erdgasfahrzeug mit hoher Reichweite
Image Thermostatische Expansionsventile
Image Sublimation von Trockeneis zur Tieftemperaturkühlung
Image Filterprüfung
Image Wärmekraftmaschinen
Image Untersuchung von Kühlsolen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-684

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Hybrid- Fluid für CO2-Sublimations-Kältekreislauf

Tieftemperaturkühlung mittels CO2-Sublimation

Image

Entwicklung eines schnellen Rechenverfahrens..

..für die Auslegung von Turbomaschinen basierend auf IBM

Image

PerCO

Herstellung neuartiger Sperrschichten an elastomeren Dichtungsmaterialien zur Verminderung der Permeation des Kältemittels R744 (CO2)

Image

Prolatent

Innovative Prozesswärmespeicher mit org. PCMs


Kontakt

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Sekretariat der Geschäftsleitung

+49-351-4081-520

+49-351-4081-525

Bild Zuse Mitglied Bild SIG