Current research projects

Image Reduction of primary noise sources of fans
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Lifetime prediction of hermetic compressor systems
Image Software modules
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Solar Cooling
Image IO-Scan - Integral measuring optical scanning method
Image Certifiable connection types in cryogenics
Image Thermostatic Expansion Valves
Image Software for technical building equipment
Image Hydrogen and methane testing field at the ILK
Image Panel with indirect evaporative cooling via membrane
Image Modular storage system for solar cooling
Image Reducing the filling quantity
Image Preformance measurements of heat exchangers
Image Air-flow test rig for fan characteristic measurement

You are here:  Home /  Research and Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Research and Development

Image

Pulse-Tube-Refrigerator with sealed compressor

for mobil use in the hydrogen technology

Image

Low Temperature Measuring Service

Measurement of Thermal Properties at Low Temperatures