Image Selbstoptimierendes Raumluftmanagementsystem
Image Befeuchtungsanlage für hochreine Gase
Image Solare Kühlung
Image Mollier hx-Diagramm
Image Prüfstände zur Messung der Luftleistung
Image Kalibrierung von Tieftemperatursensoren
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Leistungsangebot Laboranalysen
Image Software für die TGA-Planung
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Cl.Ai.Co - Clever Air Components
Image Stoffdatenmodule
Image Luft-Wasser Wärmepumpen
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Hochtemperatur Wärmepumpe

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-684

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Elektrische Komponenten in Kältekreisläufen

Hochspannungsprüfungen unter Realbedingungen

Image

PerCO

Herstellung neuartiger Sperrschichten an elastomeren Dichtungsmaterialien zur Verminderung der Permeation des Kältemittels R744 (CO2)

Image

Magnetfeldbeeinflusster Schmelzpunkt des Wassers

Gesteuerte Unterkühlung von wasserhaltigen Produkten bei Gefrierprozessen

Image

Lebensdauerprognose von Hermetikverdichtersystemen

Teilentladungen in Motorwicklungen


Kontakt

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Sekretariat der Geschäftsleitung

+49-351-4081-520

+49-351-4081-525

Bild ISO 9001
Bild Zuse Mitglied Bild SIG