Aktuelle Forschungsprojekte

Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image CFE-Test Dunstabzugshauben
Image Strömungssimulation CFD
Image Befeuchtungsanlage für hochreine Gase
Image Lebensdauerprognose von Hermetikverdichtersystemen
Image Kryostate aus GFK oder Metall
Image Stoffdatenmodule
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Thermostatische Expansionsventile
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Vakuum-Flüssigeis-Technologie
Image Drallfrei unterwegs...
Image Prüfbad-Haube
Image Hochtemperatur Wärmepumpe
Image Mikrowärmeübertrager in der Kältetechnik

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Neues sorptives Entfeuchtungssystem mit Energiespeicherung mit Naturmaterial - SEENaM

Lufttrocknung als Demand-Response-System grüner Stromerzeugung

Image

Strahltechnikentwicklung mit Wassereis-Strahlmittel

Nachhaltiger, kontaminationsfreier Prozess für Medizin und Industrie

Image

StellarHeal – Wound Healing in Space and on Earth

Ein disruptives Wundbehandlungskonzept für die Raumfahrtmedizin

Image

Matrix-Design for Artificial Meat (MADAM)

Wirtschaftlich konkurrenzfähige Steaks aus dem Zellkulturlabor

Image

Wetterschutzhaube mit integrierter nachhaltiger Kühlfunktion | NaKu-WSH

Nachrüstbare innovative Zuluftkühlung für dezentrale Lüftungsgeräte