Aktuelle Forschungsprojekte

Image Ionokalorische Kälteerzeugung
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Füllmengenreduzierung
Image Zug- und Druckprüfung
Image Prolatent
Image Thermische Speicherung mit PCM
Image Tieftemperaturtribologie
Image Innovativer Helium-Kleinverflüssiger
Image Energieeffizienzberatung Kraft-Wärme-Kälte
Image Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)
Image Prüfstände zur Messung der Luftleistung
Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Rohrgekapselte Latentwärmespeicher
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss

02/2022 - 07/2024

Silvio Tschisgale

+49-351-4081-5328

abgeschlossen

MagNum

Kurzbeschreibung

Anlagen wesentlich. Seit einiger Zeit befasst sich das ILK Dresden mit innovativen Ansätzen zur Effektivitätssteigerung konvektiver Wärmeübertrager, insbesondere durch den Einsatz von Nanofluiden als Transportmedium. In Vorstudien wurde gezeigt, dass solche Fluide den Wärmeübergang deutlich steigern können. Darüber hinaus scheint durch den Einsatz von Ferronanofluiden in Kombination mit bestimmten Magnetfeldern eine weitere positive Einflussnahme auf den Wärmeübergang möglich. Bislang sind die zugrunde liegenden physikalischen Effekte sowie die Grenzen der Technologie nicht abschließend geklärt. Das Projekt soll auf Basis experimenteller sowie numerischer Studien offene Fragenstellungen beantworten.

Einsatzbereiche

Der Einsatz von Nanofluiden und Ferrofluiden in technischen Systemen mit leistungsfähigen Wärmeübertragern kann eine signifikante Steigerung des Wärmeübergangs ermöglichen. Zusätzlich kann unter gewissen Bedingungen der Wärmeübergang gezielt gesteuert werden, indem Magnetfelder auf die eingesetzten Ferrofluide wirken.

Zielstellung

Mit Hilfe hochauflösender numerischer Simulationen soll die zeitliche und räumliche Struktur magnetisch beeinflusster Strömungen aufgeklärt werden. Das Verständnis dieser Strukturen dient der zielgenauen Implementierung von Magnetfeldern zur Erhöhung, aber insbesondere zur Kontrolle / Schaltung der Wärmeübertragung. Magnetfelder werden dabei als lokale bzw. temporäre Aktuatoren verstanden. Experimentelle Untersuchungen dienen zur Validierung der numerischen Resultate.

Ergebnisse / Aktueller Stand

Die numerischen und experimentellen Untersuchungen führten zu folgenden Ergebnissen:

Nanofluide können aufgrund der positiven thermo-physikalischen Materialeigenschaften der enthaltenen Nanopartikel den Wärmeübergang sowohl im laminaren als auch im turbulenten Strömungsregime deutlich verbessern. Ein Nachteil ist jedoch, dass das Einbringen der Partikel die viskosen Effekte erheblich verstärkt, was zu einem überproportionalen Anstieg der benötigten Pumpenleistung führt. Durch den Einsatz von Magnetfeldern lässt sich der Wärmeübergang zusätzlich steigern, allerdings nur im laminaren Bereich. Bereits im niedrigen turbulenten Strömungsregime zeigen derzeitigen Ferrofluide keine Verbesserung mehr. Dies ist auf die begrenzte natürliche Sättigungsmagnetisierung der Partikel zurückzuführen, welche eine weitere Zunahme der strömungsbeeinflussenden Kräfte verhindert.


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Drallfrei unterwegs...

...mit einem gegenläufigen Radialventilator

Image

Leistungsprüfung an Kältemittelverdichtern

Wie gut ist eigentlich der Verdichter?

Image

Thermische Kälteerzeugung / Absorptionskältetechnik

Kraft-Wärme-Kälte-Kopplung, Fernwärme, Solarthermie oder Abwärme zur Kälteerzeugung

Image

Vakuum-Flüssigeis-Technologie

Flüssigeiserzeugung durch Direktverdampfung

Image

Prüfbad-Haube

Optimiertes Haubenprüfverfahren