Aktuelle Forschungsprojekte
Sie befinden sich hier: Startseite / Messungen und Prüfungen
Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Verbesserung der hygienischen Prävention durch elektrochemische Dekontamination
Aufgrund der Gefahr sich großflächig ausbreitender Krankheiten und Seuchen gewinnt das Thema Hygiene mehr und mehr an globaler Bedeutung. Eine Methode zur Reduktion von Krankheitsausbrüchen deren Prävention durch Entfernung von gefährlichen Verunreinigungen von Oberflächen (Dekontamination). Das ILK forscht unter der Leitung von Dr. Burkholz an einer kostengünstigen und effektiven Methode - der elektrochemischen Dekontamination von elektrisch leitfähigen Oberflächen - zur Verbesserung und Erweiterung der bestehenden Hygienemaßnahmen. Die Wirkungsweise dieser Dekontaminationsmethode ist der elektrochemische Angriff ausgehend von der verunreinigten Oberfläche. Dies können beispielsweise Oberflächen von medizinischen Geräten sein. Durch die elektrochemische Erzeugung reaktiver Sauerstoffspezies (ROS) wird sämtliches biologisches anhaftendes Material zerstört. Selbst Biofilme, die sich durch eine Schleimschicht vor chemischen Reinigungsmitteln schützen, können mit diesem Prinzip effektiv zerstört werden.
Einsatzbereiche
Verbesserung bestehender Reinigungs- und Sterilisations- und Dekontaminationsprozesse beispielsweise in der Medizin, Klima- und Lüftungstechnik, Lebensmittelindustrie und Reinraum-Technologie.
Zielstellung
„EDeKo II“ wird sich mit der Erzeugung reaktiver Sauerstoffspezies sowie der Materialstabilität unter erhöhen Temperaturen, dem Einfluss von Strömungseffekten und unterschiedlichen Drücken beschäftigen. Zusätzlich sollen neue Apparaturen entwickelt und gebaut werden, die die elektrochemische Dekontamination unter anwendungsrelevanten Bedingungen gewährleisten.
Vorgehen
Im vorangegangenen Projekt EDeKo wurde die Erzeugung reaktiver Sauerstoffspezies (ROS) im Labormaßstab unter genau festgelegten Bedingungen optimiert. „Bei EDeKo II“ soll der Einfluss verschiedener Faktoren, wie zum Beispiel ein veränderlicher Elektrodenabstand, ein verändertes Verhältnis aus Anoden- und Kathodenfläche, sowie unterschiedliche Drücke und Temperaturen, auf die ROS-Bildung überprüft werden. Für die experimentellen Messungen werden neue elektrochemische Zellen konzipiert und gebaut, welche den Abstand der Elektroden zueinander in definierten Schritten variabel gestalten und unterschiedliche Geometrien für die Anode gewährleisten.
Bildmaterial
Die experimetelle Basis für die elektrochemischen Untersuchungen bildet der Potentiostat Metrohm Autolab PGSTAT 204 inklusive zugehöriger Mess- und Auswertesoftware (Nova 2.0) sowie verschiedene Edelstahl-Druckbehälter (z. B. am ILK entworfene Durchsichtautoklaven), in dem Untersuchungen Temperaturen von bis zu 95 °C und Drücken von maximal 10 bar möglich sind.
Abbildung: Cyclovoltammogramme einer Cu-Arbeitselektrode gegen die Ag/AgCl-Elektrode mit der in Kaliumphosphat-Puffer (pH 7; blau), Kaliumdihydrogenphosphat-Lösung (pH 4,5; dunkelgrün), Dikaliumhydrogenphosphat-Lösung (pH 9,2; rot), Natriumsulfat-Lösung (pH 5,9; orange), Natriumcitrat-Lösung (pH 8,3; hellgrün) und Natrium-Bicarbonatpuffer (pH 6,5; violett).
Abbildung: Bild1 Elementverteilung einer mit Protein behandelten Cu-Oberfläche ohne elektrochemische Vorbehandlung. Bild2 Nach elektrochemischer Vorbehandlung.
Verwandte Links
https://www.wotech-technical-media.de/womag/ausgabe/2014/05/24_med_burkholz_05j2014/24_med_burkholz_05j2014.php (Link zur WoMag-Publikation)
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/22719 (Dissertationsschrift)
T. Burkholz, Elektrochemische Dekontamination elektrisch leitfähiger Oberflächen (EDeKo) - Abschlussbericht, EURONORM GmbH, VF160045 (2019).
C. Jacob, G. Kirsch, A. Slusarenko, P.G. Winyard, T. Burkholz (eds.), Recent Advances in Redox Active Plant and Microbial Products: From basic chemistry to widespread applications in Medicine and Agriculture, Springer Science, ISBN: 978-9401789523 (2015).
T. Burkholz, C. Jacob, A word on redox activity, in: C. Jacob, G. Kirsch, A. Slusarenko, P.G. Winyard, T. Burkholz (eds.), Recent Advances in Redox Active Plant and Microbial Products: From basic chemistry to widespread applications in Medicine and Agriculture, Springer Science (2015).
U.M. Viswanathan, T. Burkholz, C. Jacob, Electrochemistry at the edge of reason: Chalcogen-based redox systems in biochemistry and drug design, Zeitschrift für Physikalische Chemie, 227(5), 691-706 (2013).
E. Domínguez Álvarez, U.M. Viswanathan, T. Burkholz, K. Khairan, C. Jacob, Bio-Electrochemistry and Chalcogens, Chapter 7, in M. Schlesinger (ed.), Applications of Electrochemistry in Medicine, Modern Aspects of Electrochemistry, 56, 249-282 (2013).
Weitere Projekte - Messungen/ Prüfungen
Massenspektrometer
Bestimmen der Zusammensetzung von Gasgemischen im Hoch- oder Ultrahochvakuumbereich
Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Minimierung der Kontamination bei der kryogenen Lagerung biologischer Proben