Aktuelle Forschungsprojekte

Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Software für Prüfstände
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Zug- und Druckprüfung
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Untersuchungen nach DIN EN ISO 14903
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image StellarHeal – Wound Healing in Space and on Earth
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image Prüfverfahren für Außenluftfilter
Image Luft-Wasser Wärmepumpen
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Prolatent

Sie befinden sich hier:  Startseite /  Softwareentwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Softwareentwicklung

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung

Image

Füllmengenreduzierung

Wie viel Kältemittel muss gefüllt werden?

Image

Selbstoptimierendes Raumluftmanagementsystem

Echtzeitsimulation von Raumströmungen

Image

Entwicklung eines schnellen Rechenverfahrens..

..für die Auslegung von Turbomaschinen basierend auf IBM

Image

Stoffdatenmodule

Stoffdatensoftware für Kältemittel